Introduction. Leg length and offset are important considerations in total hip arthroplasty (THA). Navigation systems are capable of providing intra-operative measurements of leg length and offset, and high accuracy has been shown in experimental studies. Objective. This in-vivo study assesses the accuracy of an imageless navigation system, with a pin-less femoral array, in measuring offset and leg length changes. Method. A prospective, consecutive series of 24 patients undergoing navigated total hip arthroplasty were included in the study. Intra-operative measurements of leg length and offset were recorded using the navigation system. For each patient pre- and post-operative digital radiographs were scaled and analysed to provide radiographic measurements of change in leg length and offset. Results.
In patients with shoulder arthritis, the ability to accurately determine glenoid morphological alterations affects the outcomes of shoulder arthroplasty surgery significantly. This study was conducted to determine whether there is a correlation between scapular and glenoid morphometric components. Existence of such a correlation may help surgeons accurately estimate glenoid bone loss during pre-operative planning. The dimensions and geometric relationships of the scapula, scapula apophysis and glenoid were assessed using CT scan images of 37 South African and 40 Chinese cadavers. Various anatomical landmarks were marked on the 77 scapulae and a custom script was developed to perform the measurements. Intra-cohort correlation and inter-cohort differences were statistically analysed using IBM SPSS v28. The condition for statistical significance was p<0.05. The glenoid width and height were found to be significantly (p<0.05) correlated with superior glenoid to acromion tip distance, scapula height, acromion tip to acromion angle distance, acromion width, scapula width, and coracoid width, in both the cohorts. While anterior glenoid to coracoid tip distance was found to be significantly correlated to glenoid height and width in the South African cohort, it was only significantly correlated to glenoid height in the Chinese cohort. Significant (p<0.05) inter-cohort differences were observed for coracoid height, coracoid width, glenoid width, scapula width, superior glenoid to acromion tip distance, and anterior glenoid to coracoid tip distance. This study found correlations between the scapula apophyseal and glenoid measurements in the population groups studied. These morphometric correlations can be used to estimate the quantity of bone loss in shoulder arthroplasty patients.
The KT1000 is widely accepted as a tool for the instrumented measurement of the anteroposterior tibial translation. The aim of this study is to compare the data obtained with the KT1000 in ACL deficient knees with the data obtained using a navigation system during “in vivo” ACL reconstruction procedures and to validate the accuracy of the KT1000. An ACL reconstruction was performed using computer aided surgical navigation (Orthopilot, B-Braun, A esculap, Tuttlingen, Germany) in thirty patients. Antero-posterior laxity measurements were obtained for all patients using KT1000 arthrometer (in a conscious state and under general anesthesia) and during surgery using the navigation system, always at 30° of knee flexion. The mean AP translation was 14±4 mm and 15,6±3,8 using the KT1000 in conscious and under general anesthesia respectively (p=0.02) and 16,1±3,7 mm using navigation.
3D accurate measurements of the skeletal structures of the foot, in physiological and impaired subjects, are now possible using Cone-Beam CT (CBCT) under real-world loading conditions. In detail, this feature allows a more realistic representation of the relative bone-bone interactions of the foot as they occur under patient-specific body weight conditions. In this context, varus/valgus of the hindfoot under altered conditions or the thinning of plantar tissues that occurs with advancing age are among the most complex and interesting to represent, and numerous measurement proposals have been proposed. This study aims to analyze and compare these measurements from CBCT in weight-bearing scans in a clinical population. Sixteen feet of diabetic patients and ten feet with severe adult flatfoot acquired before/after corrective surgery underwent CBCT scans (Carestream, USA) while standing on the leg of interest. Corresponding 3D shapes of each bone of the shank and hindfoot were reconstructed (Materialise, Belgium). Six different techniques found in the literature were used to calculate the varus/valgus deformity, i.e., the inclination of the hindfoot in the frontal plane of the shank, and the distance between the ground and the metatarsal heads was calculated along with different solutions for the identification of possible calcifications. Starting with an accurate 3D reconstruction of the skeletal structures of the foot, a wide range of measurements representing the same angle of hindfoot alignment were found, some of them very different from each other. Interesting correlations were found between metatarsal height and subject age, significant in diabetic feet for the fourth and fifth metatarsal bones. Finally, CBCT allows 3D assessment of foot deformities under loaded conditions. The observed traditional measurement differences and new measurement solutions suggest that clinicians should consider carefully the anatomical and functional concepts underlying measurement techniques when drawing clinical and surgical conclusions.
This study examined pre-operative measures to predict post-operative biomechanical outcomes in total knee arthroplasty (TKA) patients. Twenty-eight patients (female=12/male=16, age=63.6±6.9, BMI=29.9±7.4 kg/m2) with knee osteoarthritis scheduled to undergo TKA were included. All surgeries were performed by the same surgeon (GD) with a subvastus approach. Patients visited the gait lab within one-month prior to surgery and 12 months following surgery. At the gait lab, patients completed the knee injury and osteoarthritis outcome score (KOOS), a timed up and go (TUG), maximum knee flexion and extension strength evaluation, and a walking task. Variables of interest included the five KOOS sub-scores, TUG time, maximum knee flexion and extension strength normalized to body weight, walking speed, and peak knee biomechanics variables (flexion angle, abduction moment, power absorption). A Pearson's correlation was used to identify significantly correlated variables which were then inputted into a multiple regression. No assumption violations for the multiple regression existed for any variables. Pre-operative knee flexion and extension strength, TUG time, and age were used in the multiple regression. The multiple regression model statistically significantly predicted peak knee abduction moment, post-operative walking speed, and post-operative knee flexion strength. All four variables added statistically significantly to the prediction p<.05. Pre-operative KOOS values did not correlate with any biomechanical indicators of post-operative success. Age, pre-operative knee flexion and extension strength, and TUG times predicted peak knee abduction moment, which is associated with medial knee joint loading. These findings stress the importance of pre-surgery condition, as stronger individuals achieved better post-operative biomechanical outcomes. Additionally, younger patients had better outcomes, suggesting that surgeons should not delay surgery in younger patients. This delay in surgery may prevent patients from achieving optimal outcomes. Future studies should utilize a hierarchical multiple regression to identify which variables are most predictive.
In vivo evaluation of IVD strains is crucial to better understand normal and pathological IVD mechanics, and to evaluate the effectiveness of treatments. This study aimed to 1) develop a novel in vivo technique based on 3T MRI and digital volume correlation (DVC) to measure strains within IVDs and 2) to use this technique to resolve 3D strains within IVDs of healthy volunteers during extension. This study included 40 lumbar IVDs from eight healthy subjects. The optimal MR sequence to minimise DVC uncertainties was identified by scanning one subject with four different sequences: CISS, T1VIBE, T2SPACE, and T2TSE. To assess the repeatability of the strain measurements in spines with different anatomical and morphological variations four subjects were scanned with the optimal sequence, and uncertainties of the strain measurements were quantified. Additionally, to calculate 3D strains during extension, MRIs were acquired from six subjects in both the neutral position and after full extension.Background
Methods
Centre Hospitalo-Universitaire de Bordeaux, Service de Pathologie du la Colonne Vertébrale, Bordeaux, France. Assessment of cervical lordosis using a standardised digital acquisition procedure in the normal population. Three independent reviewers measured static lordosis. The EOS¯ system, which utilises low dose radiation and provides reliable standardized digital 2D acquisition with 3D reconstruction was employed.
Introduction. The Hamann-Todd collection at the Cleveland Museum of Natural History (Cleveland, OH, USA) includes 63 paediatric skeletal specimens in varying condition and completeness. The initial data collection included representative skeletons of children aged 1–18 years. The aim of this study was to better understand the growth patterns of the paediatricspine and ribs. Methods. Data from vertebrae and corresponding ribs were collected. Data included 46 measurements from the vertebral body and ribs at T1, T4, T7, T10, and L3.
Accurate measurement of pelvic tilt (PT) is critical in diagnosing hip and spine pathologies. Yet a sagittal pelvic radiograph with good quality is not always available. Studies explored the correlation between PT and sacro-femoral-pubic (SFP) angle from anteroposterior (AP) radiographs yet demonstrated conflicting conclusions about its feasibilities. This study aims to perform a cohort-controlled meta-analysis to examine the correlation between the SFP angle and PT and proposes an application range of the method. This study searched PubMed, Embase, Cochrane, and Web of Science databases for studies that evaluated the correlation between SFP angle and PT. The Pearson's correlation coefficient r from studies were tabulated and compared. Pooled r for overall and gender/age (teenage or adult) controlled subgroup were reported using Fisher's Z transformation. Heterogeneity and publication bias were evaluated using Egger's regression test for the funnel plot asymmetry. Eleven studies were recruited, with nine reported r (totalling 1,247 patients). The overall pooled r was 0.61 with high inter-study heterogeneity (I2 = 75.95%). Subgroup analysis showed that the adult group had a higher r than the teenage group (0.70 versus 0.56, p < 0.001). Although statistically insignificant (p = 0.062), the female group showed a higher r than the male group (0.72 versus 0.65). The SFP method must be used with caution and should not be used in the male teenage group. The current studies did not demonstrate that the SFP method was superior to other AP landmarks correlating to PT. Identical heterogeneity was observed among studies, indicating that more ethnicity-segregated and gender-specific subgroup studies might be necessary. More data input analysing the errors will be useful.
Identifying and restoring alignment is a primary aim of total knee arthroplasty (TKA). In the coronal plane, the pre-pathological hip knee angle can be predicted using an arithmetic method (aHKA) by measuring the medial proximal tibial angle (MPTA) and lateral distal femoral angle (aHKA=MPTA - LDFA). The aHKA is shown to be predictive of coronal alignment prior to the onset of osteoarthritis; a useful guide when considering a non-mechanically aligned TKA. The aim of this study is to investigate the intra- and inter-observer accuracy of aHKA measurements on long leg standing radiographs (LLR) and preoperative Mako CT planning scans (CTs). Sixty-eight patients who underwent TKA from 2020–2021 with pre-operative LLR and CTs were included. Three observers (Surgeon, Fellow, Registrar) measured the LDFA and MPTA on LLR and CT independently on three separate occasions, to determine aHKA. Statistical analysis was undertaken with Bland-Altman test and coefficient of repeatability. An average intra-observer measurement error of 3.5° on LLR and 1.73° on CTs for MPTA was detected. Inter-observer errors were 2.74° on LLR and 1.28° on CTs. For LDFA, average intra-observer measurement error was 2.93° on LLR and 2.3° on CTs, with inter-observer errors of 2.31° on LLR and 1.92° on CTs. Average aHKA intra-observer error was 4.8° on LLR and 2.82° on CTs. Inter-observer error of 3.56° for LLR and 2.0° on CTs was measured. The aHKA is reproducible on both LLR and CT. CT measurements are more reproducible both between and within observers. The difference between measurements using LLR and CT is small and hence these two can be considered interchangeable. CT may obviate the need for LLRs and may overcome difficulties associated with positioning, rotation, body habitus and flexion contractures when assessing coronal alignment.
Introduction: (1) Determine whether initial MRI findings correlate with clinical outcome.(2) Study the reproducibility of MRI measurements of large disc prolapses.(3) Estimate the ability to predict CES based on MRI alone.(4) Does CES only occur in degenerate discs?. Method: 31 patients with CES were identified and invited to attend clinic. 19 patients who underwent discectomy were identified. Digital photographs of all 50 MRIs were obtained. Observers: 1 Radiologist, 2 Spinal Surgeons and 1 Trainee did not know the number of patients in each group. Observers estimated the percentage spinal canal compromise on each view (0–100%), indicated whether they thought the scan findings could produce CES and commented on disc degeneration.
Introduction: Current evidence suggests CES should be operated <
48 hours from onset. MRI scanning is often not available 24 hours a day. Objectives: (1) Determine whether MRI findings correlate with clinical outcome. (2) Study the reproducibility of MRI measurements of large disc prolapses. (3) Estimate the ability to predict CES based on MRI alone. Study Design: 31 CES patients were identified,contactedand invited to follow up. Clinical outcome consisted of history and examination, and validated questionnaire assessments. 19 patients who underwent discectomy were identified. T2 mid-sagittal and axial digital photographs of all 50 MRIs were obtained. Observers did not know the number of patients in each group (1 Consultant Radiologist, 2 Consultant Spinal Surgeons and 1 SHO). They estimated the percentage spinal canal compromise on each view (0–100%) and indicated whether they thought the scan findings could produce CES.
Wear and loosening are the major causes for long tem failure in Total Hip Replacement (THR). Accurate three dimensional wear analysis of radiographs has its own limitations. We report the results of our clinical study of three dimensional volumetric wear measurements using our custom low radiation risk CT based algorithm and special software. Twenty four patients (32 hips) agreed to take part in our study. The male: female ratio was 1:4. The mean age was 75 years and the mean follow up was 5.4 years. All patients had 28 mm diameter ceramic heads. Of the 32 hips, 17 hips had polyethylene inserts and 15 hips had ceramic inserts. The maximum follow up for the polyethylene and ceramic groups were 12 years and 5.5 years respectively. All the patients were scanned using Somatom Sensation 4 scanner. Using custom software, 3D reconstruction of the components was done and landmark acquisition done on the femoral head, acetabular metal component and the insert. From these landmarks, a dedicated program was used to calculate the centre of the femoral head in relation to the centre of the acetabular component in all three axes and an indirect measurement of wear obtained. Using the axes measurements graphical 3D models of migration of the femoral head component into the acetabular liner were created and volume of wear measured using special software. Accuracy of the method was assessed by measuring the radius of the femoral head since all patients had 28mm diameter heads implanted in them. Assessment of precision of method was done by calculating the level of agreement between two independent observers. In the polyethylene group, there was no significant (<
1mm) wear in x and y axis with time. However there was significant evidence of wear in relation to time in the z axis (max wear = −2.5 mm). In the ceramic group with relatively shorter follow up, there was no evidence of significant wear in all three axes. The mean volume measured in the polyethylene group was 685 mm3 (max = 1629 mm3, min = 132mm3 ). The mean volume measured in the ceramic group was 350mm3 (max = 1045 mm3, min = 139mm3 ). The mean radius of the femoral head measured in both groups was 14.02mm (range =13.8 to 14.4 mm). Accuracy was limited by artifacts particularly in bilateral hip arthroplasties and further in the ceramic group because of the restricted access to the ceramic head for placement of markers.
Acute Compartment Syndrome (ACS) is an orthopaedic emergency that can develop after a wide array of etiologies. In this pilot study the MY01 device was used to assess its ease of use and its ability to continuously reflect the intracompartmental pressure (ICP) and transmit this data to a mobile device in real time. This preliminary data is from the lead site which is presently expanding data collection to five other sites as part of a multi-center study. Patients with long bone trauma of the lower or upper extremity posing a possibility of developing compartment syndrome were enrolled in the study. Informed consent was obtained from the patients. A Health Canada licensed continuous compartmental pressure monitor (MY01) was used to measure ICP. The device was inserted in the compartment that was deemed most likely to develop ACS and ICP was continuously measured for up to 18 hours. Fractures were classified according to the AO/OTA classification. Patient clinical signs and pain levels were recorded by healthcare staff during routine in-patient monitoring and were compared to the ICP from the device. Important treatment information was pulled from the patient's chart to help correlate all of the patient's data and symptoms. The study period was conducted from November 2020 through December 2021. Twenty-six patients were enrolled. There were 17 males, and nine females. The mean age was 38 years (range, 17–76). Seventeen patients received the device post-operatively and nine received it pre-operatively. Preliminary results show that post-operative ICPs tend to be significantly higher than pre-operative ICPs but tend to trend downwards very quickly. The trend in this measurement appears to be more significant than absolute numbers which is a real change from the previous literature. One patient pre-operatively illustrated a steep trend upwards with minimal clinical symptoms but required compartment release at the time of surgery that exhibited no muscle necrosis. The trend in this patient was very steep and, as predicted, predated the clinical findings of compartment syndrome. This trend allows an early warning signal of the absolute pressure, to come, in the compartment that is being assessed by the device. Preliminary results suggest that this device is reliable and relatively easy to use within our institutions. In addition it suggests that intracompartmental pressures can be higher immediately post-op but lower rapidly when the patient does not develop ACS. These results are in line with current literature of the difference between pre and post-operative baselines and thresholds of ICP, but are much more striking, as continuous measurements have not been part of the data set in most of past studies. Further elucidation of the pressure thresholds and profiles are currently being studied in the ongoing larger multicenter study and will add to our understanding of the critical values. This data, plus the added value of continuous trends in the pressure, upwards or downwards, will aid in preventing muscle necrosis during our management of these difficult long bone fractures.
Introduction: Current evidence suggests that CES should be operated within 48 hours from onset of sphincteric symptoms in order to maximise chances of recovery. Measurement reproducibility of large disc prolapses and clinical correlations have not previously been studied. Objectives: (1) Determine whether initial MRI findings correlate with clinical outcome (2) Study the reproducibility of MRI measurements of large disc prolapses (3) Estimate the ability to predict CES based on MRI alone. Study Design: 31 patients with CES were identified, the case notes reviewed and the patients invited to attend clinic. Outcome consisted of history and examination, and several validated questionnaire assessments. 19 patients who underwent discectomy for persistent radiculopathy were identified. None had sphincteric symptoms. All had a significant surgical target. Digital photographs of all 50 MRIs were obtained showing the T2 mid-sagittal image and the axial image with the greatest disc protrusion. The Observers: 1 Consultant Radiologist, 2 Consultant Spinal Surgeons and 1 SHO did not know the number of patients in each group. Observers estimated the percentage spinal canal compromise on each view and indicated whether they thought the scan findings could produce CES.
We aimed (1) to determine the factors which influence outcome after surgery for CES and (2) to study CES MRI measurements. 56 patients with evidence of a sphincteric disturbance who underwent urgent surgery (1994-2002) were identified and invited to clinic. 31 MRIs were available for analysis and randomised with 19 MRIs of patients undergoing discectomy for persistent radiculopathy. Observers estimated the percentage of spinal canal compromise and indicated whether they thought the scan findings could produce CES and whether the discs looked degenerate.
Introduction: We state that preserving the hip might be optimum in treatment of patients with dislocated femoral fractures presuming that the fractures unite. In order to be able to choose the right treatment for the patient with a dislocated femoral neck fracture, we have hypothesized that lack of blood flow and development of ischemia might have influence on outcome of the osteosynthesis. In this study we have established microdialysis and laser Doppler measurements in patients with a dislocated femoral neck fractures. Methods and materials: 14 patients with dislocated fractures of the femoral neck were osteosynthezised by using 2 cannulated screws. During the operation blood flow was measured with laser Doppler in order to detect pulsatile flow, and microdialysis was performed to detect ischemia. Both measurements were made in the femoral head and with the greater trochanter as control. The parameters measured were lactate, pyruvate, glycerol and glucose concentrations. Lactate/pyruvate ratio was calculated in order to estimate ischemia defined as a value over 25.
A damaged vertebral body can exhibit accelerated ‘creep’ under constant load, leading to progressive vertebral deformity. However, the risk of this happening is not easy to predict in clinical practice. The present cadaveric study aimed to identify morphometric measurements in a damaged vertebral body that can predict a susceptibility to accelerated creep. Mechanical testing of 28 human spinal motion segments (three vertebrae and intervening soft tissues) showed how the rate of creep of a damaged vertebral body increases with increasing “damage intensity” in its trabecular bone. Damage intensity was calculated from vertebral body residual strain following initial compressive overload. The calculations used additional data from 27 small samples of vertebral trabecular bone, which examined the relationship between trabecular bone damage intensity and residual strain.Abstract
Objectives
Methods
Introduction:
To determine if force measured using a strain gauge in circular external fixation frames is different for 1) different simulated stages of bone healing, and for 2) fractures clinically deemed either united or un-united. In a laboratory study, 3 similar Ilizarov frame constructs were assembled using a Perspex bone analogue. Constructs were tested in 10 different clinical situations simulating different stages of bone healing including with the bone analogue intact, with 1,3 and 50mm gaps, and with 6 materials of varying stiffness's within the 50mm gap. A Bluetooth strain gauge was inserted across the simulated fracture focus, replacing one of the 4 threaded rods used to construct the frame. Constructs were loaded to 700N using an Instron testing machine and maximum force during loading was measured by the strain gauge. Testing was repeated with the strain gauge replacing each of the 4 threaded rods in turn, with measurements being repeated 3 times, across all 3 frame constructs for all 10 simulated clinical situations (n=360). Force measurements between the situations were compared using a Kruskal-Wallis test (KW) and a post-hoc Steel test was used for multiple comparison against control (intact bone model). Additionally, a pilot study has been initiated to assess clinical efficacy of the strain gauge measurement in patients with circular frames. The strain gauge replaced the anterior rod across the fracture focus for each patient. Patients were asked to step on a weighing scale with their affected limb, and maximum weight transfer through the limb and maximal force measured in the frame were recorded. This was repeated 3 times and a mean ratio of force to weight through affected limb was calculated for each patient. The clinical situation at each measurement was designated as united or un-united by one of the senior authors for analysis. Force measurements between the situations were compared using a Wilcoxon-Mann-Whitney test.Abstract
OBJECTIVES
METHODS