Introduction: Autologous chondrocyte implantation (ACI) has been used to treat patella cartilage lesions but several studies have indicated poorer results compared to lesions on the femoral condyles. This paper investigates the effectiveness of two different methods of ACI; porcine-derived collagen membrane as a cover (ACI-C) and matrix-carried autologous chondrocyte implantation (MACI). Methods: 124 patients (mean age 33.5) with symptomatic osteochondral lesions in the patella were selected to undergo either ACI (56 patients) or
Autologous chondrocyte implantation is now a recognised treatment for patients with knee pain secondary to articular cartilage defects. The initial technique involving periosteum as the cover for the implanted cells (ACI-P) has been modified to the use of a type I/III collagen membrane (ACI-C). Matrix-induced Autologous Chondrocyte Implantation (MACI) is a technique in which autologous donor chondrocytes are implanted onto the collagen membrane and then fixed into the defect with fibrin glue. We performed a prospective randomised comparison of 247 patients (126 ACI and 121 MACI). Patients' pain and function were assessed with mean follow-up of 42 months. Function was measured using the Modified Cincinnati and Stanmore Scoring systems. Arthroscopic assessment was by the ICRS classification. The influence of the size and site of the lesion, sex, age and previous knee surgery on the results was analysed. The Modified Cincinnati score showed a mean 17.5 point rise from pre-operative scores in the ACI group and 19.6 point rise in the
Articular cartilage implantation (ACI) and associated procedures (MACI = Matrix-assisted cartilage implantation) are now established treatments for osteochondral defects in the knee. The quality of repair in terms of histological appearance is frequently not known, whilst the correlation of histology results with functional outcomes remains undefined. Histological data of the quality of the repair tissue is sparse and a precise classification proved difficult. This was a single-centre, prospective study. Over 12 years (1998-2010) 406 patients that underwent articular cartilage implantation procedures at our institution (ACI = 170,
Symptomatic articular cartilage defects are one of the most common knee injuries, arising from acute trauma, overuse, ligamentous instability, malalignment, meniscectomy, osteochondritis dissecans. Surgical treatment options include bone marrow–stimulating techniques such as abrasion arthroplasty and microfracture, osteochondral mosaicplasty, corrective osteotomy, cartilage resurfacing techniques and tissue engineering techniques using combinations of autologous cells (chondrocytes and mesenchymal stem cells), bioscaffolds, and growth factors. Matrix induced autologous chondrocyte implantation (MACI) is considered the most surgically simple form of autologous chondrocyte implantation. Our group has involved in the development of
Introduction: Initial results for the management of osteochondral defects with both ACI-C and
Background: Autologous Chondrocyte Implantation (ACI) is widely used as a treatment for symptomatic chondral and osteochondral defects of the knee. Variations of the original periosteum cover technique include the use of porcine-derived type I/III collagen as a cover (ACI-C), and the use of a collagen bilayer seeded with chondrocytes (MACI). Aim: To determine whether differences in clinical, arthroscopic and histological outcomes at 1 year exist between ACI-C and
Introduction: Initial results for the management of osteochondral defects with both ACI-C and
Introduction. We report the initial 2 and 3 year follow-up results of this randomised controlled trial of autologous chondrocyte implantation (ACI) using porcine-derived collagen membrane as a cover (ACI-C) versus matrix-carried autologous chondrocyte implantation (MACI) for the treatment of osteochondral defects of the knee. Methods. 217 patients were randomised to have either ACI (92 patients) or
Purpose. We report on minimum 2 year follow-up results of 71 patients randomised to autologous chondrocyte implantation (ACI) using porcine-derived collagen membrane as a cover (ACI-C) and matrix-induced autologous chondrocyte implantation (MACI) for the treatment of osteochondral defects of the knee. Introduction. ACI is used widely as a treatment for symptomatic chondral and osteochondral defects of the knee. Variations of the original periosteum-cover technique include the use of porcine-derived type I/type III collagen as a cover (ACI-C) and matrix-induced autologous chondrocyte implantation (MACI) using a collagen bilayer seeded with chondrocytes. Results. 71 patients with a mean age of 33 years (15-48) were randomised to undergo either an ACI-C or a
Introduction: ACI is used widely as a treatment for symptomatic chondral and osteochondral defects of the knee. Variations of the original periosteum-cover technique include the use of porcine-derived type I/type III collagen as a cover (ACI-C) and matrix-induced autologous chondrocyte implantation (MACI) using a collagen bilayer seeded with chondrocytes. We report the minimum 2 year follow-up results of 192 patients randomised to autologous chondrocyte implantation (ACI) using porcine-derived collagen membrane as a cover (ACI-C) and matrix-induced autlogous chondrocyte implantation (MACI) for the treatment of osteochondral decfects of the knee. Methods: 192 patients (mean age 34.2) were randomised to have either ACI (86 patients) or
Purpose: We report on minimum 2 year follow-up results of 71 patients randomised to autologous chon-drocyte implantation (ACI) using porcine-derived collagen membrane as a cover (ACI-C) and matrix-induced autologous chondrocyte implantation (MACI) for the treatment of osteochondral defects of the knee. Introduction: ACI is used widely as a treatment for symptomatic chondral and osteochondral defects of the knee. Variations of the original periosteum-cover technique include the use of porcine-derived type I/type III collagen as a cover (ACI-C) and matrix-induced autolo-gous chondrocyte implantation (MACI) using a collagen bilayer seeded with chondrocytes. Results: 71 patients with a mean age of 33 years (15–48) were randomised to undergo either an ACI-C or a
Introduction and Aims: The treatment of cartilage defects has been revolutionised by the introduction of autologous chondrocyte implantation (ACI) over the last decade. Several studies have shown superior clinical and histological results compared to traditional treatments such as mosaicplasty. ACI involves injecting chondrocytes into the defect and sealing it with periosteum or chondroguide membrane. Recently, a new technique has been introduced which allows chondrocytes to be embedded within a matrix which is then used to fill the cartilage defect. The aim is to assess the early functional, clinical and histological results of
Introduction. The treatment of distal femoral cartilage defects using autologous chondrocyte implantation (ACI) and matrix-guided autologous chondrocyte implantation (MACI) is become increasingly common. This prospective 7-year study reviews and compares the clinical outcome of ACI and
Introduction: The treatment of distal femoral cartilage defects using autologous chondrocyte implantation (ACI) and matrix-guided autologous chondrocyte implantation (MACI) is become increasingly common. This prospective 7-year study reviews and compares the clinical outcome of ACI and
Introduction and Aims: The aim of this study was to use biological, functional and radiographic evaluation to demonstrate that cultured autologous chondrocytes implanted using a type I/III collagen membrane leads to regeneration of hyaline-like articular cartilage in the knee. Method: Approximately 70,000 knee arthroscopies are performed every year in Australia; 60% involve chondral surface defects. Three regenerative autologous cell therapy techniques have been used in Australia to treat full thickness chondral lesions:. periostial-covered autologous chondrocyte implantation (PACI);. collagen-covered autologous chondrocyte implantation (CACI);. matrix-induced autologous chondrocyte implantation (MACI). The team at the University of Western Australia has concentrated on CACI and
Manufacturing of autologous chondrocytes presents unique challenges, and robust and reliable release assays are required to ensure product quality. We have discovered markers that correctly identify chondrocytes and predict potency. Novel qPCR assays developed with these markers for our Matrix-induced Autologous Chondrocyte Implant product (MACI. ®. implant) are described. An identity assay must distinguish chondrocytes from potentially contaminating cell types, such as synovial fibroblasts. Microarray analysis of more than 47,000 transcripts led to the discovery of two markers, currently aliased “Cart1” and “Synov1”, that have been characterized as the two most differentially expressed mRNAs between chondrocyte and synovial fibroblast cultures. A potency assay must identify cells that have the potential to form hyaline-like cartilage. We examined expression of critical components of hyaline cartilage during the chondrocyte manufacturing process and in re-differentiation assays. From these studies a gene, which we call “Hyaline1”, was identified as a candidate potency marker. Using an assay measuring the ratio of Cart1:Synov1, a large population study of chondrocyte and synovial fibroblast cultures examined the assay’s suitability for identity classification with our proposed Cart1:Synov1 acceptance boundary. In this study, assay specificity and sensitivity were both observed to be 100%. The utility of the assay was further demonstrated in mixing experiments, where a majority of chondrocytes (in mixtures with synovial fibroblasts) was required to pass the assay acceptance. These results indicate that the assay is useful for determination of both culture identity and culture homogeneity, and thus represents a significant improvement over previous identity assays. The potency assay is also a real-time quantitative RT-PCR assay that measures levels of Hyaline1. Characterization of
The treatment of osteochondral lesions in the ankle joint remains a challenging problem. While debridement and drilling or microfracture of the lesion reduce symptoms initially, long-term stability of the fibrous repair tissue is questionable. Osteochondral transplantation or mosaicplasty provide hyaline cartilage and repair the bony defect at the same time. However, an open arthrotomy with medial, lateral or anterior osteotomy is necessary to repair lesions of the talus. Lesions of the distal tibia cannot be reached. Matrix Associated Chondrocyte Implantation (MACI) has been shown to produce hyaline like cartilage repair tissue, and the implantation can be performed arthroscopically. Long term follow up studies (up to 10 years) in the knee demonstrate promising results. The purpose of this study was to assess the efficacy of arthroscopic