Advertisement for orthosearch.org.uk
Results 1 - 20 of 34
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 152 - 152
1 Jun 2012
Papannagari R Hines G Sprague J Morrison M
Full Access

Introduction. The most common bearing couple used in total knee arthroplasty (TKA) is ultra-high molecular weight polyethylene (UHMWPE) articulating against a CoCrMo alloy femoral component. Although this couple has demonstrated good clinical results, UHMWPE wear has been identified as one of the principal causes for long-term failure of total knee joint replacements. 1. indicating a need for improvements in TKA bearings technology. The wear resistance of UHMWPE can be improved by radiation crosslinking; however, in order to get the full benefit of this improved wear resistance, an abrasion resistant ceramic counterface is necessary. 2. Since the radiation crosslinking degrades mechanical properties, it is also important to have an optimized radiation dose and subsequent processing. The purpose of this study was to evaluate the long-term wear performance of VERILAST Technology comprising two advanced bearing technologies, abrasion resistant OXINIUM femoral components (OxZr). 3-4. and wear/strength optimized 7.5 Mrad crosslinked polyethylene (7.5-XLPE). 5. Materials and Methods. Three component assemblies of LEGION(tm) cruciate retaining (CR) OxZr femoral components, 7.5-XLPE tibial inserts were tested on an AMTI knee simulator under displacement control at 1 Hz frequency as described previously. 2. The tibial inserts were manufactured from compression molded GUR 1020 UHMWPE, radiation crosslinked to 7.5 Mrad dose, remelted to extinguish free radicals, and sterilized by EtO. The wear test was conducted for 45 Mcycle, which was considered to be a conservative estimate for the amount of cycles that would occur during 30 years of typical in-vivo use based on the relationship between patient age and the number of loading cycles as reported in the literature. 6-8. Results. The predominant wear feature on the 7.5-XLPE inserts was burnishing. There were no signs of fatigue wear or delamination. The mean volumetric wear rate (± SD) of the 7.5-XLPE inserts articulating against OxZr femoral components for 45 Mcycle was 0.58±0.17 mm. 3. /Mcycle. In a previous wear test under substantially identical conditions for 5 Mcycle simulating approximately 3 years of use, the mean volumetric wear rate of CoCr and virgin UHMWPE (CPE) couples was 23.4±2.4 mm. 3. /Mcycle. 2. The mean volumetric wear rate of the OxZr/7.5-XLPE couples was approximately 98% lower compared to the CoCr/CPE couples (p<0.01). After simulating 3 years of use, the mean volumetric wear of OxZr/7.5-XLPE couples (2.67 mm. 3. ) was approximately 98% lower than CoCr/CPE couples (120.42 mm. 3. ) (Figure 1). Furthermore, after simulating 30 years of use, the mean volumetric wear of OxZr/7.5-XLPE couples (22.78mm. 3. ) was approximately 81% lower than the CoCr/CPE couples after simulating 3 years of use (120.42 mm. 3. ) (Figure 2). Discussion. This study demonstrates that coupling OxZr femoral components with 7.5-XLPE inserts results in a TKA bearing combination that provides and maintains significantly lower, long-term wear performance


Bone & Joint Research
Vol. 8, Issue 11 | Pages 535 - 543
1 Nov 2019
Mohammad HR Campi S Kennedy JA Judge A Murray DW Mellon SJ

Objectives

The aim of this study was to determine the polyethylene wear rate of Phase 3 Oxford Unicompartmental Knee Replacement bearings and to investigate the effects of resin type and manufacturing process.

Methods

A total of 63 patients with at least ten years’ follow-up with three bearing types (1900 resin machined, 1050 resin machined, and 1050 resin moulded) were recruited. Patients underwent full weight-bearing model-based radiostereometric analysis to determine the bearing thickness. The linear wear rate was estimated from the change in thickness divided by the duration of implantation.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 510 - 511
1 Oct 2010
Boesenach B Nelissen R Van Der Heide H Wolkenfelt J
Full Access

Aim: Suction fit is a common phenomenon of metal on metal (MOM) or ceramic on ceramic hip joints, in which the head and the cup can be hold to each other in the presence of lubricant. The aim of this study was to measure the suction force of MOM hip joints with different clearances and fluid viscosities.

Materials and Methods: CoCrMo hip prostheses of Ø50 mm with two diametral clearances of 100 and 200 microns were tested. A range of fluids were made using different ratios of deionized water and carboxy-methyl cellulose (CMC). The fluid viscosities ranged from 0.0011 to 0.3 Pa s determined by a cone-on-plate viscometer (Physica Rheolab MC100). Before the measurement, about 1 ml fluid was placed in the cup and the bearing surfaces of both the head and the cup were fully wetted by rotating the femoral ball in the cup. A pre-loaded 3kN was applied to push the head into the cup by a servohydraulic test machine, the femoral head was then lifted out of the cup at a rate of 2 mm/s and the maximum suction force value was recorded.

Results: Generally, the suction force increased with the increase of viscosity for both 100 and 200 microns clearances. In the lower range of the viscosity, the suction force increased rapidly, but when the viscosity reached a certain value it leveled off to about 190 N for the 100 microns clearance and 150 N for the 200 microns clearance. In the whole range of viscosity, the suction forces of 100 microns clearance were higher than those of 200 microns clearance and the differences were statistically significant (t-test, P< 0.01). In the lower range of viscosity (< 0.04 Pa s), the suction force of 100 microns clearance was more than two times higher than that of 200 microns clearance.

Discussion: For a MOM hip joint, suction force can be explained by the vacuum within the bearings. When the clearance is small and the lubricant viscosity is high, the edge of the bearing surfaces can be easily sealed off so that certain degree of vacuum can be produced between the head and the cup. In this test, the maximum suction force for the Ø50 mm MOM hip joint can be calculated as: F = (projected area) x (atmospheric pressure) = 196 (N). The results confirmed that the suction force of Ø50 mm components can not be higher than 196 N.

Although suction force may have a benefit in reducing the risk of dislocation, it may prevent lubricant recovery between the bearings and will influence the sliding resistance. If the suction force is too high, the head and cup can be held together such that the recovery of synovial fluid is restricted or impossible, even when the hip is not loaded during the swing phase. Both the clearance and the viscosity have a significant effect to determine the suction force and the lubrication of MOM hip joints. It is concluded that suction force is a factor to be considered during the selection of MOM hip joint clearance.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 69 - 69
23 Jun 2023
Buckner BC Urban ND Cahoy KM Garvin KL
Full Access

Oxidized zirconium (Oxinium) and highly cross-linked polyethylene (HXLPE) were developed with the purpose of minimizing wear, and subsequent osteolysis, in Total Hip Arthroplasty (THA). However, few articles have been published on long-term results of Oxinium on highly cross-linked polyethylene. The purpose of this investigation is to report minimum 10-year HXLPE wear rates and the clinical outcome of patients in this group and compare this population to a control group of cobalt chrome and ceramic.

One hundred forty THAs were performed for 123 patients using an Oxinium head with an HXLPE liner. Ninety-seven had 10 years of clinical follow-up (avg. 14.5). Harris Hip Scores (HHS) were collected preoperatively and at the most recent follow-up. Radiographs of 85 hips were available for a minimum 10-year follow-up (avg. 14.5) and used to calculate wear using PolyWare software. Control groups of cobalt chrome and ceramic articulation on HXLPE with a minimum 10-year follow-up were studied.

Clinical follow-up of the Oxinium group showed a statistical improvement compared to preoperative and was similar to the control group of patients. Radiographic evaluation found the linear and volumetric wear rates for the Oxinium group of 0.03 mm/year (range 0.00–0.08) and 3.46 mm3/year (range 1.0 to 15.0) respectively. There was no statistically significant difference in linear or volumetric wear rate between the groups (P-value 0.92 and 0.55 respectively). None of these patients underwent revision of their hip for any reason.

Oxinium on highly cross-linked polyethylene has performed exceptionally with wear rates comparable to those of cobalt chrome or ceramic on HXLPE.


Bone & Joint Open
Vol. 4, Issue 11 | Pages 839 - 845
6 Nov 2023
Callary SA Sharma DK D’Apollonio TM Campbell DG

Aims. Radiostereometric analysis (RSA) is the most accurate radiological method to measure in vivo wear of highly cross-linked polyethylene (XLPE) acetabular components. We have previously reported very low wear rates for a sequentially irradiated and annealed X3 XLPE liner (Stryker Orthopaedics, USA) when used in conjunction with a 32 mm femoral heads at ten-year follow-up. Only two studies have reported the long-term wear rate of X3 liners used in conjunction with larger heads using plain radiographs which have poor sensitivity. The aim of this study was to measure the ten-year wear of thin X3 XLPE liners against larger 36 or 40 mm articulations with RSA. Methods. We prospectively reviewed 19 patients who underwent primary cementless THA with the XLPE acetabular liner (X3) and a 36 or 40 mm femoral head with a resultant liner thickness of at least 5.8 mm. RSA radiographs at one week, six months, and one, two, five, and ten years postoperatively and femoral head penetration within the acetabular component were measured with UmRSA software. Of the initial 19 patients, 12 were available at the ten-year time point. Results. The median proximal, 2D, and 3D wear rates calculated between one and ten years were all less than 0.005 mm/year, with no patient recording a proximal wear rate of more than 0.021 mm/year. Importantly, there was no increase in the wear rate between five and ten years. Conclusion. The very low wear rate of X3 XLPE liners with larger articulations remains encouraging for the future clinical performance of this material. Cite this article: Bone Jt Open 2023;4(11):839–845


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 96 - 96
1 May 2019
Su E
Full Access

Acetabular implant position is important for the stability, function, and long-term wear properties of a total hip arthroplasty (THA). Prior studies of acetabular implant positioning have demonstrated a high percentage of outliers, even in experienced hip surgeons, when conventional instruments are used. Computer navigation is an attractive tool for use in (THA, as it has been shown to improve the precision of acetabular component placement and reduce the incidence of outliers. However, computer navigation with imageless, large-console systems is costly and often interrupts the surgeon's workflow, and thus, has not been widely adopted. Another method to improve acetabular component positioning during THA is the use of fluoroscopy with the direct anterior approach. Studies have demonstrated that the supine position of the patient during surgery facilitates the use of fluoroscopic guidance, thus improving acetabular component position. A handheld, accelerometer based navigation unit for use in total hip replacement has recently become available to assist the surgeon in positioning the acetabular component during anterior approach THA, potentially reducing the need for intraoperative fluoroscopic studies. We sought to compare the radiographic results of direct anterior THA performed with conventional instrumentation vs. handheld navigation to determine the accuracy of the navigation unit, and to see whether or not there was a reduction in the fluoroscopic time used during surgery. Furthermore, we timed the use of the navigation unit to see whether or not it required a substantial addition to surgical time. Our results demonstrate that a handheld navigation unit used during anterior approach THA had no difference with regard to acetabular cup positioning when compared to fluoroscopically assisted THA, but led to a reduction in the use of intraoperative fluoroscopy time


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 55 - 55
1 Jun 2018
Su E
Full Access

Acetabular implant position is important for the stability, function, and long-term wear properties of a total hip arthroplasty (THA). Prior studies of acetabular implant positioning have demonstrated a high percentage of outliers, even in experienced hip surgeons, when conventional instruments are used. Computer navigation is an attractive tool for use in THA, as it has been shown to improve the precision of acetabular component placement and reduce the incidence of outliers. However, computer navigation with imageless, large-console systems is costly and often interrupts the surgeon's workflow, and thus, has not been widely adopted. Another method to improve acetabular component positioning during THA is the use of fluoroscopy with the direct anterior approach. Studies have demonstrated that the supine position of the patient during surgery facilitates the use of fluoroscopic guidance, thus improving acetabular component position. A handheld, accelerometer-based navigation unit for use in total hip replacement has recently become available to assist the surgeon in positioning the acetabular component during anterior approach THA, potentially reducing the need for intra-operative fluoroscopic studies. We sought to compare the radiographic results of direct anterior THA performed with conventional instrumentation vs. handheld navigation to determine the accuracy of the navigation unit, and to see whether or not there was a reduction in the fluoroscopic time used during surgery. Furthermore, we timed the use of the navigation unit to see whether or not it required a substantial addition to surgical time. Our results demonstrate that a handheld navigation unit used during anterior approach THA had no difference with regard to acetabular cup positioning when compared to fluoroscopically assisted THA, but led to a reduction in the use of intra-operative fluoroscopy time


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 12 - 12
1 Apr 2019
Campbell P Kung MS Park SH
Full Access

Background. Distal femoral replacements (DFR) are used in children for limb-salvage procedures after bone tumor surgery. These are typically modular devices involving a hinged knee axle that has peripheral metal-on-polyethylene (MoP) and central metal-on-metal (M-M) articulations. While modular connections and M-M surfaces in hip devices have been extensively studied, little is known about long-term wear or corrosion mechanisms of DFRs. Retrieved axles were examined to identify common features and patterns of surface damage, wear and corrosion. Methods. The cobalt chromium alloy axle components from 13 retrieved DFRs were cleaned and examined by eye and with a stereo microscope up to 1000× magnification. Each axle was marked into 6 zones for visual inspection: the proximal and distal views, and the middle (M-M) and 2 peripheral (MoP) zones. The approximate percentage of the following features were recorded per zone: polishing, abrasion or scratching, gouges or detectable wear, impingement wear (i.e. from non- intentional articulation), discoloration and pitting. Results. In each case, the middle M-M zones showed more damage features compared with peripheral MoP zones. Brown discoloration, presumably due to tribofilm deposits, was the predominant M-M area feature, particularly at the junction between the MoP and M-M zones. Higher magnification showed areas of polishing underlying the discoloration, suggesting repetitive removal of the surface metal and re-deposition of tribofilms (Fig 2B). 9 cases demonstrated reflective patches resembling “thumbprint” or “fish scale” markings, which, under higher magnification, showed signs of scratching and grooving in a radial pattern (Figs 2D, 3A). Pits were occasionally present but appeared to be from third-body damage as signs of corrosion were absent. Features that resembled carbides, sometimes with associated “comet” patterns of scratching were apparent under higher magnification in some areas. The MoP zones showed variable scratching, abrasion and wear polishing. The MoP to M-M junctional areas were demarcated by a distinct band corresponding, in some cases, to a narrow wear groove or gouge. 3 axles showed evidence of severe impingement wear on one proximal end. Discussion. This study of retrieved axle components demonstrated varying types of surface wear damage but no clear evidence of corrosion. This is presumably because these parts are in nearly constant motion during gait. Third-body damage may have resulted from the breakdown of surface carbides, leading to scratching, abrasion and wear polishing under high contact stress. Severe impingement wear presumably occurred after catastrophic damage to the polyethylene bushings, allowing eccentric loading and extensive metal wear. The components were revised for a range of clinical reasons including aseptic loosening and the need to expand the prosthesis during growth. With the exception of the few cases with severe impingement, it is unlikely that the wear features seen here contributed to the need for revision. While it was reassuring that corrosion was not a prominent feature of these modular M-M articulations, retrieval analysis of DFR components should be continued to confirm this finding, better document the in vivo wear processes and point to design features that might be improved for future patients. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 2 - 2
1 Jun 2018
Trousdale R
Full Access

There are pros and cons of all bearing surface options for our young patients. I pick the bearing surface for my young patients trying to maximise durability and minimise risks. For the ultra-young, ≤30 years of age patient, I use ceramic-on-ceramic. The pros of this are the best wear couple available and a favorable track record (with well designed implants). The risks can be minimised: fracture risk now decreased, runaway wear minimised with good surgical technique, impingement problems minimised with good technique and well designed implants, as well as squeaking is minimised with good design (majority of reported squeakers are of one designed socket). I don't use metal-on-metal because I am not willing to subject young patients to potentially 50+ years of high metal ion exposure. I also don't use HCLPE. This would be okay from a biologic standpoint but I still have concerns about long-term wear durability. So the marked superior wear characteristics of ceramic-ceramic win in my view. For my middle age patients, 30–60, I use HCLPE I don't use ceramic-ceramic because at some point between 30 and 60 years of age the improved wear properties are outweighed by their potential risks (fracture, impingement, squeak). HCLPE at short F/U (<15 years) appears to be durable, reliable with good wear properties so it is a reasonable choice. Using a ceramic head versus CoCr provides minimal improvement in wear properties in the lab but no marked advantage in vivo. Concerns persist about cobalt-chrome corrosion so I use ceramic heads in the majority of patients. For patients under age 60 the wear characteristics of HCLPE appear very favorable and one doesn't assume other risks seen in with metal-on-metal and ceramic-ceramic. Little justification for a hard-on-hard bearing in this patient subgroup. I use ceramic heads in majority to avoid corrosion issues


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 111 - 111
1 Aug 2017
Su E
Full Access

Acetabular implant position is important for the stability, function, and long-term wear properties of a total hip arthroplasty (THA). Prior studies of acetabular implant positioning have demonstrated a high percentage of outliers, even for experienced hip surgeons, when conventional instruments are used. Computer navigation is an attractive tool for use in THA, as it has been shown to improve the precision of acetabular component placement and reduce the incidence of outliers. However, computer navigation with imageless, large-console systems is costly and often interrupts the surgeon's workflow, and thus has not been widely adopted. Another method to improve acetabular component positioning during THA is the use of fluoroscopy with the direct anterior approach. Studies have demonstrated that the supine position of the patient during surgery facilitates the use of fluoroscopic guidance, thus improving acetabular component position. A handheld, accelerometer based navigation unit for use in total hip replacement has recently become available to assist the surgeon in positioning the acetabular component during anterior approach THA, potentially reducing the need for intra-operative fluoroscopic studies. We sought to compare the radiographic results of direct anterior THA performed with conventional instrumentation vs. handheld navigation to determine the accuracy of the navigation unit, and to see whether or not there was a reduction in the fluoroscopic time used during surgery. Furthermore, we timed the use of the navigation unit to see whether or not it required a substantial addition to surgical time. Our results demonstrate that a handheld navigation unit used during anterior approach THA had no difference with regard to acetabular cup positioning when compared to fluoroscopically assisted THA, but led to a reduction in the use of intra-operative fluoroscopy time


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 1 - 1
1 Jun 2018
Haddad F
Full Access

We live in an era where younger, fitter, more active patients are presenting with the symptoms and signs of degenerative joint disease and require total knee and total hip arthroplasty at a young age. At the same time, this population of patients is living longer and longer and is likely to create new and more complex failure modes for their implants. The ideal solution is a biological one, whereby we can either prevent joint degradation or catch it in its early stages and avoid further deterioration. There may also be advances along the way in terms of partial arthroplasty and focal resurfacing that will help us prevent the need for total joint arthroplasty. There are several tensions that need to be considered. Should we resurface / replace early, particularly now that we have access to navigation and robotics and can effectively customise the implants to the patient's anatomy and their gait pattern? This would allow good function at a young age. Or should we wait as long as possible and risk losing some function for the sake of preserving the first arthroplasty for the lifetime of the patient?. There are some key issues that we still do not fully understand. The lack of true follow-up data beyond 20 or 30 years is worrying. The data available tends to be from expert centers, and always has a dramatic loss to follow-up rate. We worry about bearing surfaces and how those materials will behave over time but we really do not know the effect of chronic metal exposure over several decades, nor do we really understand what happens to bone as it becomes more and more osteopenic and fragile around implants. We have largely recorded but ignored stress shielding, whereas this may become a very significant issue as our patients get older, more fragile, more sarcopaenic and more neurologically challenged. All the fixation debates that we have grappled with, may yet come back to the fore. Can ingrowth lead to failure problems later on? Will more flexible surfaces and materials be required to fit in with the elasticity of bone?. We have failed dramatically at translating the in vitro to the in vivo model. It seems that the in vitro model tells us when failure is going to occur but success in vitro does not predict success in vivo. We, therefore, cannot assume that long-term wear data from simulators will necessarily translate to the extreme situations in vivo where the loading is not always idealised, and can create adverse conditions. We must, therefore, consider further how to improve and enhance our interventions. There is no doubt that the avoidance of arthroplasty needs to be at the heart of our thinking but, ultimately, if arthroplasty is to be performed, it needs to be performed expertly and in such a way as to minimise later failure. It also, clearly, needs to be cost-effective. The next stage will no doubt involve close cooperation between surgeons, engineers and industry partners to identify individualised surgical targets, select an appropriate prosthesis to minimise soft-tissue strain and develop a reproducible method of achieving accurate implantation. An ideal outcome can only be achieved by an appropriately trained surgeon selecting the optimal prosthesis to implant in the correct position in the well-selected patient. In the longer term, our choice of implants and the way that they are inserted and fixed must take into account the evolving physiology of our patients, the nature of our devices and how to limit harm from them, and the long-term impact of the materials used which we sometimes still do not understand


Bone & Joint Research
Vol. 13, Issue 6 | Pages 306 - 314
19 Jun 2024
Wu B Su J Zhang Z Zeng J Fang X Li W Zhang W Huang Z

Aims

To explore the clinical efficacy of using two different types of articulating spacers in two-stage revision for chronic knee periprosthetic joint infection (kPJI).

Methods

A retrospective cohort study of 50 chronic kPJI patients treated with two types of articulating spacers between January 2014 and March 2022 was conducted. The clinical outcomes and functional status of the different articulating spacers were compared. Overall, 17 patients were treated with prosthetic spacers (prosthetic group (PG)), and 33 patients were treated with cement spacers (cement group (CG)). The CG had a longer mean follow-up period (46.67 months (SD 26.61)) than the PG (24.82 months (SD 16.46); p = 0.001).


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 61 - 61
1 Dec 2016
Gascoyne T Parashin S Turgeon T Bohm E Laende E Dunbar M
Full Access

Articulation of the polyethylene (PE) insert between the metal femoral and tibial components in total knee replacements (TKR) results in wear of the insert which can necessitate revision surgery. Continuous PE advancements have improved wear resistance and durability increasing implant longevity. Keeping up with these material advancements, this study utilises model-based radiostereometric analysis (mbRSA) as a tool to measure in vivo short-term linear PE wear to thus predict long-term wear of the insert. Radiographic data was collected from the QEII Health Sciences Centre in Halifax, NS. Data consisted of follow-up RSA examinations at post-operative, six-, 12-, and 24-month time periods for 72 patients who received a TKR. Implanted in all patients were Stryker Triathlon TKRs with a fixed, conventional PE bearing of either a cruciate retaining or posterior stabilised design. Computer-aided design (CAD) implant models were either provided by the manufacturer or obtained from 3D scanned retrieved implants. Tibial and femoral CAD models were used in mbRSA to capture pose data in the form of Cartesian coordinates at all follow-ups for each patient. Coordinate data was manually entered into a 3D modeling software (Geomagic Studio) to position the implant components in virtual space as presented in the RSA examinations. PE wear was measured over successive follow-ups as the linear change in joint space, defined as the shortest distance between the tibial baseplate and femoral component, independently for medial and lateral sides. A linear best-fit was applied to each patient's wear data; the slope of this line determined the annual wear rate per individual patient. Wear rates were averaged to provide a mean rate of in vivo wear for the Triathlon PE bearing. Mean linear wear per annum across all 72 patients was 0.088mm/yr (SD: 0.271 mm/yr) for the medial condyle and 0.032 mm/yr (SD: 0.230 mm/yr) for the lateral condyle. Cumulative linear wear at the 2-year follow-up interval was 0.207mm (SD: 0.565mm) and 0.068mm (SD: 0.484mm) for the medial and lateral condyles, respectively. Linear PE wear measurements using mbRSA and Geomagic Studio resulted in 0.056mm/yr additional wear on the medial condyle than the lateral condyle. Large standard deviations for yearly wear rates and cumulative measurements demonstrate this method does not yet exhibit the accuracy needed to provide short-term in vivo wear measurement. Inter-patient variability from RSA examinations is likely a source of error when dealing with such small units of measure. Further analysis on patient age and body mass index may eliminate some variability in the data to improve accuracy. Despite high standard deviations, the results from this research are in proximity to previously reported linear wear measurements 0.052mm/yr and 0.054mm/yr. Linear wear analysis will continue upon completion of >100 patients, in addition to volumetric PE wear over the entire articulating surface


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 56 - 56
1 Feb 2017
Kawata T Goto K So K Kuroda Y Okuzu Y Matsuda S
Full Access

Introduction. The long-term wear performance of highly cross-linked polyethylene (HXLPE) in cemented total hip arthroplasty (THA) has rarely been reported. Here we report a prospective randomized comparative analysis of radiographic wear after a minimum follow-up of 10 years in cemented THAs with either HXLPE or conventional polyethylene (CPE), and assess its clinical relevance. Patients and Methods. From 1999 to 2001, we conducted 94 primary cemented THAs with a 22.225-mm head at our hospital as part of a prospective randomized trial. All surgeries were performed using a direct lateral approach with a trochanteric osteotomy (Dall's approach). The patients were divided into 4 groups. Twenty-six hips in group A were implanted with CPE sockets against zirconia heads and Charnley-type stems. HXLPE sockets (Aeonian, Kyocera Medical Corp) were implanted in all hips in the other 3 groups. Twenty-five hips in group B were implanted with zirconia heads and KC stems (Kyocera Medical Corp), 23 hips in group C with zirconia heads and distal cylindrical stems, and 20 hips in group D with stainless steel heads and C-stem (DePuy Inc). The sockets were highly cross-linked by gamma irradiation at a dose of 35 kGy, heat annealed at 110ºC, and sterilized with 25 kGy of gamma irradiation in nitrogen. For radiographic evaluation, anteroposterior radiograms were taken for each patient annually, and every two years postoperatively for wear analyses. Two-dimensional head penetration was measured on each postoperative radiogram using a computer-aided technique. Results. Wear measurements were performed for 59 cases followed up over 10 years. Linear wear rates were 0.138±0.074 (mm/year±SD) for group A, 0.010±0.015 for group B, 0.013±0.020 for group C, and 0.012±0.027 for group D. Linear wear rates differed significantly between group A and other groups, and no significant difference was found among groups B, C, and D. There were four revision cases. Among them, two sockets of group A were revised for aseptic loosening at 7 and 14 years postoperatively with linear wear rates of 0.749 and 0.153 mm, respectively. Two stems of group B and C were revised for aseptic loosening at 10 and 9 years postoperatively with linear wear rates of 0.007 and 0.041 mm, respectively. There were no other cases with aseptic loosening in any group. Osteolysis was found in 10 cases (group A: 7, group B: 1, group C: 1, group D: 1), and there was a significant difference in linear wear rates between the cases with and without osteolysis (0.157±0.083 and 0.030±0.053 mm/year±SD respectively). Discussion. The two revision cases of HXLPE did not have aggressive socket wear, and possibly cement fracture caused osteolysis and stem instability. The results of this study indicate that there is a significant difference in wear rate between CPE and HXLPE, and it was evident that PE wear was associated with osteolysis and aseptic loosening of the socket


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 7 - 7
1 Feb 2017
Haider H Weisenburger J Garvin K
Full Access

Wear testing of THR has chaperoned generations of improved UHMWPE bearings into wide clinical use. However, previous in vitro testing failed to screen many metal-on-metal hips which failed. This talk tours hip wear testing and associated standards, giving an assortment of THR wear test results from the author's laboratory as examples. Two international hip wear-simulator standards are used: ISO-14242-1 (anatomic configuration) and ISO-14242-3 (orbital-bearing). Both prescribe 5 million (MC) force-motion cycles involving cross-shear synchronized with compression simulating walking gate of ideally aligned THRs. ISO-14242-1 imposes flexion (flex), abduction-adduction (ad-ab) and internal-external (IE) rotations independently and simultaneously. An orbital-bearing simulator more simply rotates either a tilted femoral head or acetabular component, switching from flexion-dominated to ad-ab-dominated phases in each cycle with some IE. In the latter, the acetabular component is typically placed below the femoral head to accentuate abrasive conditions, trapping third-body-wear debris. Wear is measured (ISO-14242-2) gravimetrically (or volumetrically in some hard-on-hard bearings). Wear-rate ranges from negligible to >80mg/MC beyond what causes osteolysis. This mode-1 adhesive wear can therefore “discriminate” to screen hip designs-materials in average conditions. Stair-climbing, sitting, squatting and other activities may cause THR edge-loading and even impingement with smaller head-to-neck ratios or coverage angle, naturally worse in metal-on metal hips. Deformation of thin acetabular components during surgical impaction may cause elevated friction or metal-metal contact, shedding more metal-ions and accelerating failure. Surgical misalignments in inclination angle, version and tilt can make this worse, even during modest activities in hard-on-hard bearings. Abrasive particulate debris from bone or bone-cement, hydroxyapatite, neck-impingement, normal wear, or corrosion can compound the above. Such debris can scratch the femoral head surface, or embed in the UHMWPE liner compromising the wear of even metal-on-plastic hips. Much of the belated standardization activity for higher demand hip testing is in response to the metal-metal failures. ASTM F3047M is a recent non-prescriptive guide for what more rigorous testing can generally be done. Third-body particulate can be intentionally introduced or random scratching of the femoral component surface in extra abrasion testing. Also, the compressive load can be increased, more frequent start-stops to disrupt lubrication, and steepening acetabular shell-liner angles to reduce contact area and cause edge-loading, made harsher when combined with version misalignment. Transient separation can occur between head and liner during the swing phase in a lax THR joint with low coverage angle and misalignments; the separated head impacts the liner rim when reseating. An edge-loading ISO test is currently being discussed where (so-called) “microseparation” to a known distance is directly imposed by a lateral spring force in a hip simulator. Friction testing of a THR in a pendulum-like setup undergoing flexion or abduction swings is being discussed in the ASTM, and so have multi-dimensional THR friction measurements during a long-term wear test simultaneously measuring and separating friction of three rotational (flex, ad-ab, and IE) axes. THR wear test methods continue to evolve to address more challenges such as novel duo-mobility THR designs, where UHMWPE bearings cannot be removed for gravimetric wear measurements


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 101 - 101
1 Feb 2017
Clarke I Donaldson T Grijalva R Maul C
Full Access

Despite 46 years clinical experience with ceramic-on-ceramic (COC) hip bearings, there is no data on what constitutes a successful long-term wear performance. There have been many studies of short-term failures (Dorlot, 1992; Nevelos, 2001, Walters, 2004). One retrieval study using optical-CMM technology (OCM) documented volumetric wear-rates ranging up to 7mm. 3. /year on femoral heads (Esposito 2012). It was noted that 83% of these revisions showed stripe damage within 3–4 years. The supposition would appear to be that these were bearing-related failures. Our selected COC case for this study was particularly interesting, a female patient having her index surgery performed at age 17 and revised at age 49 (following onset of hip pain). This patient led an active lifestyle, went dancing multiple times per week, and was mother to three children. The 38mm Autophor. TM. THA (left hip) was eventually revised due to the cup painful migrating (Fig. 1: 32-years follow-up). Radiographs showed cup inclination at approximately 19. °. Impingement marks were noted on the CoCr neck and collared stem (Fig. 2). Implant geometry and form factors were analyzed by standard contour measurement (CMM) while SEM and EDS imaging provided wear topography and evidence of metal contaminants. Linear and volumetric wear in head and cup were studied by OCM at Redlux (Southampton, UK). The head's main wear-pattern consisted of two overlapping circular areas (Fig. 3). The narrowest margin made by the wear-pattern was used to define the superior aspect of the head. By light microscopy, the superior main-wear zone covered 1490–1680mm. 2. area while the total bi-lobed area covered larger 2170mm. 2. area. OCM analysis delineated the same bi-lobed appearance of head wear with the superior worn area assessed at 1365mm. 2. The cup revealed a more extensive wear pattern that circumnavigated its surface. The black staining identified by EDS imaging in the cup revealed Co and Cr elements. By OCM technique the head volumetric wear was 179 mm³ and the cup was 214mm. 3. (Fig. 4), i.e. 20% greater than head. Volumetric wear-rate averaged 12.3mm. 3. per year for this pioneering alumina ceramic. This first demonstration of long-term, COC volumetric wear provides the foundation for retrieval and simulator studies alike. Our patient represented a “worst-case” scenario for hip-replacement surgery, due to extreme youth and long-term sporting life. While the superior wear pattern was not totally contained within the cup (Fig. 3), her implant positioning was clearly adequate. Nevertheless both cup edge-wear and CoCr contamination indicated this patient experienced habitual impingement, i.e. alumina cup rim wearing against CoCr femoral neck (Fig. 2). The head wear-pattern was distinctly bi-lobed but OCM images showed the majority of wear was in the superior hemisphere as noted in MOM retrievals (Clarke, 2013). The head wear-rate in this pioneering “Mittelmeier” THA averaged 5.6mm³/year over 32-years of follow-up. This appeared directly comparable to ceramic head wear measured with the same OCM-technique in modern ceramic THA (Esposito, 2012: 0.1 to 7mm. 3. /year). This indicated to us that COC wear rates of the order 10–14mm. 3. /year represented an acceptable “normal” level of performance in young and active individuals


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 51 - 51
1 May 2016
Brenkel I Graichen H Himden S Murphy J Parkinson R
Full Access

Introduction. Cross-linked polyethylene in total hip arthroplasty has demonstrated excellent long-term wear resistance, leading to its acceptance as the standard bearing used in hip replacement. Adoption in knee replacement has been tentative, as the cross-linking process can decrease the polyethylene mechanical properties. The current study's purpose was examining survivorship of a fixed bearing knee replacement system featuring a moderately cross-linked polyethylene (MXLK) bearing, a cobalt chrome (CoCr) tibial tray with a highly polished top surface, and a new polyethylene-to-tray locking mechanism. The MXLK is made of ultra-high molecular weight GUR1020 resin irradiated with 5 Mrad gamma radiation, followed by a free radical quenching remelting annealing process, above the 135 degree melting point, that provides wear and fatigue resistance, and oxidative stability. Materials & Methods. From November 2005 to June 2008, 539 PFC Sigma primary total knee replacements (TKA's) were prospectively entered into this non-comparative, multicenter, multinational study. Average age at time of surgery was 67 years, 57% were female, average body mass index was 30.4 kg/m2, and the dominant diagnosis was osteoarthritis (97%). Kaplan-Meier (KM) survivorship was the primary endpoint with primary event definition being removal of any component for any reason. The time variable was one of the following: time to revision, time to death, or time to last follow-up. Additional endpoints included: American Knee Society scores (knee and function), Oxford Knee score (range 12 to 60), SF-12 scores; radiographically assessed rates of radiolucent lines (RLL's) and osteolysis. RLL's greater than 2mm were counted. Progressive RLL's were those increasing in width from an earlier follow-up interval. Adjacent RLL's were defined as RLL's in adjacent zones. Complete RLL's were defined as RLL's completely around a component. This report provides 5-year results in this ongoing study with a 10-year final endpoint. Results. The primary endpoint 5-year KM survivorship estimate (Figure 1) was 96.7% (95% C.I.: 94.7% – 98.0%). There were 15 revisions reported through 5 years, and another 5 thereafter. The average 5-year AKS score was 86.5 points, which was a 46.7 point improvement versus pre-operative (see Figure 3 for all clinical outcomes). RLL's, progressive RLL's, adjacent RLL's, and complete RLL's of the 529 knees with x-rays were as follows, respectively: 3.78% (N=20 knees), 0.57% (N=3), 0.38% (N=2), and 0%. Discussion. Polyethylene wear after knee replacement surgery is a major concern for both orthopaedic surgeons and prosthetic manufacturing companies. As a result, manufacturing and design changes have been made to increase longevity of knee replacement systems. Lower wear rates were observed for fixed bearing inserts in polished CoCr trays compared with inserts in relatively rough titanium trays in both in vitro wear studies (Billi 2010, J Biomech) and in vivo studies (Berry 2012, CORR). Results of the current study demonstrate excellent 5-year survivorship that are consistent with a recent report (Kindsfater 2015, J Arthroplasty) on the same device, materials, and the class of primary TKA. Additional follow-up to 10 years is underway with these patients


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 82 - 82
1 May 2012
McCombe P Williams S Spencer L
Full Access

The authors entered patients into a randomised trial to compare the results of the use of cemented and cementless acetabular prostheses between 1993 and 1995. The results of mid-term wear studies at average follow up of eight years were reported in the journal in 2004. We now present long-term results to show the eventual fate of the hip replacements under study. The initial study group of 162 patients was randomly assigned to a modular titanium cup with a polyethylene liner or an all polyethylene cemented cup. All patients received a cemented stem with a 26 mm head and a standardised surgical technique. The polyethylene wear was estimated via head penetration measurement and the mid-term results showed a significantly higher wear rate in the cementless cups compared to the cemented cups (0.15mm/yr vs. 0.07mm/yr p<0.0001). The prediction was that this would lead to a higher rate of aseptic loosening in the cementless group. Patients have now been re-examined at an average of 15 years with the main emphasis on prosthesis survival. Wear studies were also performed. There were exclusions from the initial study because of death and reoperation for reasons other than aseptic loosening. The number of patients in this longer-term study had decreased as a result of death and loss to follow up. Revisions for aseptic loosening did not follow the path as suggested by the mid term wear studies. There were five cup revisions in the cemented group and one cup revision in the cementless group for aseptic loosening. No femoral stem was revised for aseptic loosening. Details of the long-term wear studies will be presented and osteolysis rates and extent documented. Despite the statistically significant difference in wear rates at the mid term, an incorrect prediction of eventual loosening rates was made. The authors believe that there are many factors other than wear rates involved in longevity of fixation. We also believe there are many weaknesses in long term prospective, randomised trials in joint replacement and question whether they are, in fact, level 1 evidence in the age of evidence based medicine


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 70 - 70
1 Apr 2019
Van Citters D Currier B Titus A Currier J
Full Access

Introduction. Wear of polyethylene tibial inserts has been cited as being responsible for up to 25% of revision surgeries, imposing a very significant cost burden on the health care system and increasing patient risk. Accurate measurement of material loss from retrieved knee bearings presents difficult challenges because gravimetric methods are not useful with retrievals and unworn reference dimensions are often unavailable. Geometry and the local anatomy restrict in vivo radiographic wear analysis, and no large-scale analyses have illuminated long-term comparative wear rates and their dependence on design and patient factors. Our study of a large retrieval archive of knee inserts indicates that abrasive/adhesive wear of polyethylene inserts, both on the articular surface and on the backside of modular knees is an important contributor to wear, generation of debris and integrity of locking geometry. The objective of the current study is to quantify wear performance of tibial inserts in a large archive of retrieved knees of different designs. By assessing wear in a large and diverse series, the goal is to discern the effect on wear performance of a number of different factors: patient factors that might help guide treatment, knee design factors and bearing material factors that may inform a surgeon's choice from among the array of arthroplasty device options. Methods. An IRB approved retrieval database was queried for TKA designs implanted between 1997 and 2017. 1385 devices from 5 TKA designs were evaluated. Damage was ranked according to Hood's method, oxidation was determined through FTIR, and wear was determined through direct measurement of retrieved inserts using a previously established protocol. Design features (e.g. materials, conformity, locking mechanisms, stabilization, etc.) and patient demographics (e.g. age, weight, BMI, etc.) were cataloged. Multivariate analysis was performed to isolate factors contributing to wear, oxidation, and damage. Results. Wear and oxidation were both found to scale with time in vivo in conventional and crosslinked polyethylene. Wear rate was also found to scale with time in vivo, but was not found to be a function of oxidation. Regression shows patient age and female sex to correlate negatively with wear rate. Polished trays, crosslinked polyethylene, and constrained knee designs are all correlated with decreased wear rates. Discussion. While this study indicates that loosening and infection are predominant causes for TKA revision, wear related failure remains common. We believe this to be the largest existing comparative study of modern TKA wear rates. Insert wear is shown to correlate with several patient factors. Wear performance also varies significantly between knee designs, polyethylene material choice and tray surface finish. When compared to a historical standard for knee wear rates, all designs evaluated in the current study exhibited significant improvements in wear rates. Retrieval analysis can provide insight into implant and patient related factors that contribute to knee wear, with the goal of improving patient outcomes and best matching design decisions to patient populations


Bone & Joint Open
Vol. 2, Issue 11 | Pages 1004 - 1016
26 Nov 2021
Wight CM Whyne CM Bogoch ER Zdero R Chapman RM van Citters DW Walsh WR Schemitsch E

Aims

This study investigates head-neck taper corrosion with varying head size in a novel hip simulator instrumented to measure corrosion related electrical activity under torsional loads.

Methods

In all, six 28 mm and six 36 mm titanium stem-cobalt chrome head pairs with polyethylene sockets were tested in a novel instrumented hip simulator. Samples were tested using simulated gait data with incremental increasing loads to determine corrosion onset load and electrochemical activity. Half of each head size group were then cycled with simulated gait and the other half with gait compression only. Damage was measured by area and maximum linear wear depth.