Advertisement for orthosearch.org.uk
Results 1 - 20 of 64
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 24 - 24
24 Nov 2023
Tvilum A Johansen MI Glud L Malskær D Khamas A Carmali S Mhatre S Søgaard A Faddy E de Vor L Rooijakkers S Østergaard L Meyer R Zelikin A Jørgensen N
Full Access

Aim. Infections represent a serious threat to the successful utilization of implants in modern medicine. Implant-associated infections are difficult to treat, because they involve biofilms that protect bacteria from the immune system and harbour antibiotic-tolerant persister cells. In this work, we developed an antibody-drug conjugate (ADC) containing the anti-neoplastic drug mitomycin C (MMC) as a novel treatment paradigm for implant-associated infections. MMC was chosen as it is a potent antimicrobial against biofilms and its synthesis into an ADC was chosen to alleviate toxicity. Following development and synthesis of the ADC, stability and release of MMC was measured. We then used the ADC to kill bacteria in suspension and in biofilms, in vitro and in vivo. Method. Mitomycin C was conjugated to a commercially available antibody against S. aureus via a disulfide linkage, with a drug release occurred via thiol-disulfide exchange. ADC as tested against S. aureus under various growth conditions (planktonic, persisters and biofilm). In vitro toxicity of ADC vs MMC was measured using a human cell line (MOLT-4). Finally, two independent in vivo experiments were performed in a murine implant-associated osteomyelitis model. In experiment one ADC treatment was compared NaCl, vancomycin and vancomycin + ADC (n=10 for all groups). Subsequently, ADC was compared to NaCl, the antibody used in the ADC construction, MMC and a novel ADC constructed with a non-S. aureus antibody (n=10 for all groups). All treatments were started day 7 post inoculation and were administered for 3 days. CFU enumeration was done following sonication to quantify bacterial load. Results. Drug release could be triggered on demand with N-acetyl cysteine and release occurred, once in contact with free thiols on S. aureus cell surface. The ADCs exhibited a concentration-dependent antimicrobial effect against S. aureus with doses exceeding 0.5 mg/l reducing amount of CFU to below detection limit (p< 0.001). 15 minutes exposure to ADC resulted in an approx. 2 log CFU/ml reduction compared to untreated biofilms (p < 0.01). In vivo ADC treatment was effective compared to NaCl treatment and the vancomycin treatment (p≤ 0.001). Further ADC and MMC treatment were comparable in efficacy, but both were superior than NaCl, pure antibody and the non-specific ADC (p≤ 0.05). Finally, in vitro cytotoxicity was significantly lower for ADC than MMC. Conclusions. In this study we have demonstrated that ADCs can be a novel treatment approach to combat implant-associated infections caused by S. aureus


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_14 | Pages 88 - 88
1 Dec 2019
Luca MD Materazzi A Klatt A Bottai D Tavanti A Trampuz A
Full Access

Aim. To investigate the ability of the bacteriophage Sb-1 to treat and prevent implant-associated infections due to methicillin-resistant Staphylococcus aureus (MRSA) in Galleria mellonella larvae implanted with a K-wire. Method. The stability of Sb-1 in G. mellonella larvae was investigated by injecting a phage titer of 10. 8. PFU and evaluating the presence of Sb-1 in hemolymph at different time points. For infection experiments, sterile stainless-steel K-wires (4 mm, 0.6 mm Ø) were implanted into larvae. Two days after implant, larvae were infected with MRSA ATCC 43300 (1×10. 5. CFU) and incubated at 37°C for further 2 days. Implanted-infected larvae were thus treated for 2 days (3×/day) with 10µL of: i) PBS; ii) Sb-1 (10. 7. PFU); iii) Daptomycin (4mg/kg), iv) PBS (24h)/Daptomycin(24h); v) Sb-1(24h)/Daptomycin(24h). To evaluate the prophylactic efficacy of Sb-1, an experiment based on phages or vancomycin (10mg/kg) administration, followed by MRSA infection of implanted larvae was performed. Both two days post-infection and post-treatment, K-wires were explanted, and the material was sonicated and plated for MRSA colony counting. Results. Sb-1 titer resulted stable in hemolymph of G. mellonella larvae for 6–8 h post-administration. Two days post-infection of K-wire implanted larvae, ≈5×10. 7. CFU/ml MRSA were found on the material. K-wires from larvae treated with Sb-1 or Daptomycin showed a MRSA CFU/ml reduction of ≈1 log compared to the CFU/ml values of the untreated control. The staggered administration Sb-1/Daptomycin determined higher CFU reduction (≈ 3.5 log). Prophylaxis with Sb-1 prevented MRSA infection of 7out of 10 larvae similarly to vancomycin. Conclusions. G. mellonella larvae implanted with K-wires are a suitable model to test antibiofilm formulations in vivo. Sb-1 phage is able to prevent implant-associated infection due to MRSA in larvae. Sequential combination of Sb-1 and Daptomycin strongly reduces the MRSA load on implanted K-wires


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_16 | Pages 29 - 29
1 Dec 2015
Camernik P Dolinar D Kocjancic B Sluga B Jeverica S
Full Access

Accurate identification of pathogens is a crucial step for successful treatment of implant-associated infections. Sonication of explanted foreign material and subsequent sonicate-fluid culture is regarded to be more sensitive than conventional tissue culture. However, the duration of incubation of cultures remains controversial. The aim of our study was to evaluate diagnostic yield of prolonged 14-days incubation compared to more classical 7-days incubation. Consecutive sonicate fluid culture results from a 2-years period (2013–2015) were retrospectively analysed. All sonicate fluids were cultured aerobically, anaerobically and using blood culture system for 14 days and inspected for growth on day 1, 2, 7 and 14 days. Terminal subcultivation was performed on day 7 from broth and blood culture system for additional 7 days aerobically and anaerobically. Time of bacterial isolation was recorded. Microbiological significance was determined based on isolate quantity and concomitant growth in conventional tissue cultures. A total of 394 sonicate fluid cultures from 304 patients (8–95 years, mean age 62), 53.9% (n=164) women, were analysed. 51.0% (n=201) were from explanted osteosynthetic material, 37.6% (n=148) from hip prosthesis and 11.4% (n=45) from knee prosthesis. Overall, 57.1% (n=225) of cultures were positive. Among them, 71.1% (n=160) were monomicrobial, 21.3% bimicrobial and 7.6% (n=17) polymicrobial. In total, 312 bacterial isolates were isolated. The most frequently isolated bacteria were coagulase-negative staphylococci (CoNS) 34.6% (n=108), Staphylococcus aureus 16.4% (n=51) and Propionibacterium acnes 11.2% (n=35). Gram-negative bacteria and anaerobes represented 18.3% (n=57) and 14.4% (n=45) of isolates, respectively. Among all sonicate fluid cultures, 92.0% (n=207) were positive after 7 days while 8.0% (n=18) were positive only after prolonged 14-days incubation with P. acnes being the predominant bacteria isolated after prolonged incubation. Among all P. acnes isolates 57.1% (n=20) were isolated within 7 days and 42.9% (n=15) within 14 days. Based on microbiologic criteria, 45.7% (n=16) of them were diagnostic; 37.1% (n=13) among early isolates and 8.6% (n=3) among late isolates, difference being statistically significant (p=0.016). Prolonged 14-days incubation of sonicate fluid culture for the diagnosis of implant-associated infections offers only minor 8.0% improvement with regard to conventional 7-days incubation. The majority of P. acnes isolated after prolonged incubation are non-diagnostic using microbiologic criteria. Caution in an interpretation of significance of P. acnes isolated after 14-days incubation is warranted. However, due to a significant impact on patient management prolonged 14-days incubation is still recommended


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 68 - 68
22 Nov 2024
Mannala G Labat B Ladam G Pascal T Walter N Szymski D Riool M Alt V Rupp M
Full Access

Aim. Orthopedic implants play a tremendous role in fixing bone damages due to aging as well as fractures. However, these implants tend to get colonized by bacteria on the surface, leading to infections and subsequently prevention of healing and osteointegration. Recently, Roupie et al. showed that a nisin layer-by-layer based coating applied on biomaterials has both osteogenic and antibacterial properties. The Galleria mellonella larva is a well-known insect infection model that has been used to test the virulence of bacterial and fungal strains as well as for the high throughput screening of antimicrobial compounds against infections. Recently, we have developed an insect infection model with G. mellonella larvae to study implant-associated biofilm infections using Kirschner (K)-wires as implant material. Here, we would like to test the antibacterial capacity of nisin layer-by-layer based coatings on K-wires against Staphylococcus aureus in the G. mellonella larva implant infection model. Method. Prior to the implantation procedure, G. mellonella larvae are maintained at room temperature on wheat germ in an incubator. The larvae received bare titanium K-wires (uncoated), or either control-coated or nisin-coated K-wires. After one hour, the larvae were injected with 5×10. 5. S. aureus bacteria per larva (i.e., hematogenous implant infection model). Next, the larvae were incubated at 37. o. C in an incubator and the survival of the larvae was monitored for five days. Moreover, the number of bacteria on the implant surface and in the surrounding tissue was determined after 24h of incubation. Further, scanning electron microscopy (SEM) analyses were performed to study the effect of nisin on biofilm formation. Results. The larvae receiving the nisin-coated K-wires showed significantly higher survival rates compared to uncoated titanium K-wires, although not when compared to control-coated K-wires. A more than 1-log reduction in number of bacteria on the implant surface and in the surrounding tissue was observed in larvae receiving the nisin-coated K-wires, when compared to uncoated titanium K-wires SEM analysis showed reduced colonization of the bacteria nisin-coated K-wires compared to the controls. Conclusions. In conclusion, the antimicrobial nisin layer-by-layer based coating applied on titanium surfaces is able to prevent implant-related S. aureus biofilm infection in G. mellonella and is a promising antimicrobial strategy to prevent implant-related infections


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 29 - 29
24 Nov 2023
Riool M Li R van Hofwegen L Vavilthota N de Boer L Loontjens J Zaat S
Full Access

Aim

The use of medical devices has grown significantly over the last decades, and has become a major part of modern medicine and our daily life. Infection of implanted medical devices (biomaterials), like titanium orthopaedic implants, can have disastrous consequences, including removal of the device. For still not well understood reasons, the presence of a foreign body strongly increases susceptibility to infection. These so-called biomaterial-associated infections (BAI) are mainly caused by Staphylococcus aureus and Staphylococcus epidermidis. Formation of biofilms on the biomaterial surface is generally considered the main reason for these persistent infections, although bacteria may also enter the surrounding tissue and become internalized within host cells. To prevent biofilm formation using a non-antibiotic based strategy, we aimed to develop a novel permanently fixed antimicrobial coating for titanium devices based on stable immobilized quaternary ammonium compounds (QACs).

Method

Medical grade titanium implants (10×4×1 mm) were dip-coated in a solution of 10% (w/v) hyperbranched polymer, subsequently in a solution of 30% (w/v) polyethyleneimine and 10 mM sodium iodide, using a dip-coater, followed by a washing step for 10 min in ethanol. The QAC-coating was characterized using water contact angle measurements, scanning electron microscopy, FTIR, AFM and XPS. The antimicrobial activity of the coating was evaluated against S. aureus strain JAR060131 and S. epidermidis strain ATCC 12228 using the JIS Z 2801:2000 surface microbicidal assay. Lastly, we assessed the in vivo antimicrobial activity in a mouse subcutaneous implant infection model with S. aureus administered locally on the QAC-coated implants prior to implantation to mimic contamination during surgery.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 45 - 45
2 Jan 2024
Riool M Li R Hofwegen L de Boer L Loontjens J Zaat S
Full Access

Infection of implanted medical devices (biomaterials), like titanium orthopaedic implants, can have disastrous consequences, including removal of the device. These so-called biomaterial-associated infections (BAI) are mainly caused by Staphylococcus aureus and Staphylococcus epidermidis. To prevent biofilm formation using a non-antibiotic based strategy, we aimed to develop a novel permanently fixed antimicrobial coating for titanium devices based on stable immobilized quaternary ammonium compounds (QACs).

Medical grade titanium implants were dip-coated in subsequent solutions of hyperbranched polymer, polyethyleneimine and 10 mM sodium iodide, and ethanol. The QAC-coating was characterized using water contact angle measurements, scanning electron microscopy, FTIR, AFM and XPS. The antimicrobial activity of the coating was evaluated against S. aureus strain JAR060131 and S. epidermidis strain ATCC 12228 using the JIS Z 2801:2000 surface microbicidal assay. Lastly, we assessed the in vivo antimicrobial activity in a mouse subcutaneous implant infection model with S. aureus administered locally on the QAC-coated implants prior to implantation to mimic contamination during surgery.

Detailed material characterization of the titanium samples showed the presence of a homogenous and stable coating layer at the titanium surface. Moreover, the coating successfully killed S. aureus and S. epidermidis in vitro. The QAC-coating strongly reduced S. aureus colonization of the implant surface as well as of the surrounding tissue, with no apparent macroscopic signs of toxicity or inflammation in the peri-implant tissue at 1 and 4 days after implantation.

An antimicrobial coating with stable quaternary ammonium compounds on titanium has been developed which holds promise to prevent BAI. Non-antibiotic-based antimicrobial coatings have great significance in guiding the design of novel antimicrobial coatings in the present, post-antibiotic era.

Acknowledgements: This research was financially supported by the Health∼Holland/LSH-TKI call 2021–2022, project 25687, NACQAC: ‘Novel antimicrobial coatings with stable non-antibiotic Quaternary Ammonium Compounds and photosensitizer technology'.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_17 | Pages 27 - 27
1 Dec 2018
Bandeira R de C. Melo M Costa LR Cruz VD Mello MA de A. C. Tadeu H Silva RM Salles M
Full Access

Aim

Orthopedic implant related surgical site infection (SSI) is a severe complication which represents an important challenge concerning to its treatment. Therefore, gram-negative orthopedic infections have recently become a global concern.

Method

Retrospective study through searching of the SCIH (infection control service) database, concerning to the year 2016 and 2017. Cases selected were those of implant placement clean surgeries (osteosynthesis or prosthetic placement) which evolved with SSI and Gram-negative bacterial growth in bone tissue or periprosthetic cultures.


Bone & Joint Research
Vol. 11, Issue 9 | Pages 629 - 638
1 Sep 2022
Pijls BG Sanders IMJG Kuijper EJ Nelissen RGHH

Aims

Here we used a mature seven-day biofilm model of Staphylococcus aureus, exposed to antibiotics up to an additional seven days, to establish the effectiveness of either mechanical cleaning or antibiotics or non-contact induction heating, and which combinations could eradicate S. aureus in mature biofilms.

Methods

Mature biofilms of S. aureus (ATCC 29213) were grown on titanium alloy (Ti6Al4V) coupons for seven days and were subjected to the following treatments or their combinations: antibiotics, mechanical cleaning, or heat shock by induction heating of 60°C for one minute. Experiments were repeated at least five times.


The Bone & Joint Journal
Vol. 103-B, Issue 2 | Pages 234 - 244
1 Feb 2021
Gibb BP Hadjiargyrou M

Antibiotic resistance represents a threat to human health. It has been suggested that by 2050, antibiotic-resistant infections could cause ten million deaths each year. In orthopaedics, many patients undergoing surgery suffer from complications resulting from implant-associated infection. In these circumstances secondary surgery is usually required and chronic and/or relapsing disease may ensue. The development of effective treatments for antibiotic-resistant infections is needed. Recent evidence shows that bacteriophage (phages; viruses that infect bacteria) therapy may represent a viable and successful solution. In this review, a brief description of bone and joint infection and the nature of bacteriophages is presented, as well as a summary of our current knowledge on the use of bacteriophages in the treatment of bacterial infections. We present contemporary published in vitro and in vivo data as well as data from clinical trials, as they relate to bone and joint infections. We discuss the potential use of bacteriophage therapy in orthopaedic infections. This area of research is beginning to reveal successful results, but mostly in nonorthopaedic fields. We believe that bacteriophage therapy has potential therapeutic value for implant-associated infections in orthopaedics. Cite this article: Bone Joint J 2021;103-B(2):234–244


Aims. The efficacy of saline irrigation for treatment of implant-associated infections is limited in the presence of porous metallic implants. This study evaluated the therapeutic efficacy of antibiotic doped bioceramic (vancomycin/tobramycin-doped polyvinyl alcohol composite (PVA-VAN/TOB-P)) after saline wash in a mouse infection model implanted with titanium cylinders. Methods. Air pouches created in female BalBc mice by subcutaneous injection of air. In the first of two independent studies, pouches were implanted with titanium cylinders (400, 700, and 100 µm pore sizes) and inoculated with Staphylococcus aureus (1 × 10. 3. or 1 × 10. 6. colony-forming units (CFU)/pouch) to establish infection and biofilm formation. Mice were killed after one week for microbiological analysis. In the second study, pouches were implanted with 400 µm titanium cylinders and inoculated with S. aureus (1 × 10. 3. or 1 × 10. 6. CFU/pouch). Four groups were tested: 1) no bacteria; 2) bacteria without saline wash; 3) saline wash only; and 4) saline wash plus PVA-VAN/TOB-P. After seven days, the pouches were opened and washed with saline alone, or had an additional injection of PVA-VAN/TOB-P. Mice were killed 14 days after pouch wash. Results. The first part of the study showed that low-grade infection was more significant in 400 µm cylinders than cylinders with larger pore sizes (p < 0.05). The second part of the study showed that saline wash alone was ineffective in eradicating both low- and high-grade infections. Saline plus PVA-VAN/TOB-P eradicated the titanium cylinder-associated infections, as manifested by negative cultures of the washouts and supported by scanning electron microscopy and histology. Conclusion. Porous titanium cylinders were vulnerable to bacterial infection and biofilm formation that could not be treated by saline irrigation alone. Application of PVA-VAN/TOB-P directly into the surgical site alone or after saline wash represents a feasible approach for prevention and/or treatment of porous implant-related infections. Cite this article: Bone Joint Res 2024;13(11):622–631


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 73 - 73
24 Nov 2023
Erbeznik A Šturm AC Smrdel KS Triglav T Vodicar PM
Full Access

Aim. The aim of our study was to analyze putative genes for virulence factors of Cutibacterium isolates obtained from implant-associated infections. Methods. We analyzed 64 isolates of Cutibacterium spp. (C. acnes (53/64), C. avidum (6/64), C. granulosum (4/64), C. namnetense (1/64)) using NextSeq 550 (Illumina, San Diego, CA, USA) and performed genomic analysis of 24 genes associated with virulence factors (VFs) of C. acnes previously reported in the literature. Most isolates were obtained from implant-associated infections (IAI) between 2012–2021 at the Institute of Microbiology and Immunology, Faculty of Medicine, Ljubljana. Additionally, we included the first C. namnetense isolated in our laboratory from surgical site infection. Results. C. acnes and C. namnetense have the highest number of VFs among those examined. The VFs gntK (shikimate kinase) and HYL-IB / II (hyaluronate lyase) are absent in phylotype IA. 1. (sequence types (ST) A, C, D according to the SLST scheme). Repressor gene of porphyrin synthesis, deoR is present in all Cutibacterium spp. isolates. The phylotypes II and IB show a similar distribution of VFs, with the presence of the VFs rcsB (compound for biofilm formation) and HYL-IA (hyaluronate lyase), which are absent in other C. acnes phylotypes and other Cutibacterium spp. In phylotypes IA. 1. and IB, the sequence of genes encoding VFs dsA1 and dsA2 does not have 100% genomic coverage, possibly indicating homologs between species. The isolates of C. acnes and C. namnetense possess all three CAMP (1,2,4) factors, which are not detected in other Cutibacterium spp. However, further analysis revealed species-specific CAMP factors in C. avidum and C. granulosum. Both species also have similar other genes for VFs, mainly encoding heat shock proteins and lipases, while VFs related to biofilm production are mostly absent (rcsB, ytpA). Conclusion. We found several differences in the distribution of VFs among Cutibacterium spp. isolated from IAI


Bone & Joint Research
Vol. 11, Issue 10 | Pages 700 - 714
4 Oct 2022
Li J Cheung W Chow SK Ip M Leung SYS Wong RMY

Aims. Biofilm-related infection is a major complication that occurs in orthopaedic surgery. Various treatments are available but efficacy to eradicate infections varies significantly. A systematic review was performed to evaluate therapeutic interventions combating biofilm-related infections on in vivo animal models. Methods. Literature research was performed on PubMed and Embase databases. Keywords used for search criteria were “bone AND biofilm”. Information on the species of the animal model, bacterial strain, evaluation of biofilm and bone infection, complications, key findings on observations, prevention, and treatment of biofilm were extracted. Results. A total of 43 studies were included. Animal models used included fracture-related infections (ten studies), periprosthetic joint infections (five studies), spinal infections (three studies), other implant-associated infections, and osteomyelitis. The most common bacteria were Staphylococcus species. Biofilm was most often observed with scanning electron microscopy. The natural history of biofilm revealed that the process of bacteria attachment, proliferation, maturation, and dispersal would take 14 days. For systemic mono-antibiotic therapy, only two of six studies using vancomycin reported significant biofilm reduction, and none reported eradication. Ten studies showed that combined systemic and topical antibiotics are needed to achieve higher biofilm reduction or eradication, and the effect is decreased with delayed treatment. Overall, 13 studies showed promising therapeutic potential with surface coating and antibiotic loading techniques. Conclusion. Combined topical and systemic application of antimicrobial agents effectively reduces biofilm at early stages. Future studies with sustained release of antimicrobial and biofilm-dispersing agents tailored to specific pathogens are warranted to achieve biofilm eradication. Cite this article: Bone Joint Res 2022;11(10):700–714


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_22 | Pages 6 - 6
1 Dec 2017
Bouige A Fourcade C Bicart-Sée A Félicé M Gautié L Krin G Marlin P Giordano G Bonnet E
Full Access

Aim. Ceftobiprole, a broad-spectrum cephalosporin, could be used for post-operative treatment of bone implant-associated infections. The aim of the study is to evaluate the in vitro susceptibility of bacteria isolated from bone implant-associated infections to ceftobiprole. Method. We conducted an in vitro, retrospective and comparative study between July 2013 to April 2017 including patients with bone implant-associated infections (prosthesis joint infection (PJI) and osteosynthesis material (OM)). To evaluate MIC distribution of ceftobiprole against Gram positive and Gram negative strains and to compare activity of ceftobiprole to vancomycin for Gram positive and ceftriaxone or ceftazidime for Gram negative strains, we tested all strains (stored in Cryobank storage system) for minimal inhibitory concentrations (MIC) determination by E-test bandelet for ceftobiprole and comparator antibiotics. Results. We collected 63 Gram negative strains (57 Enterobateriaceae and 6 Pseudomonas aeruginosa), isolated from 25 patients with OM and 38 patients with PJI (23 hips and 15 knees), and 100 Gram positive strains (85 Staphylococcus sp, 8 E. faecalis, 7 Propionibacterium sp.) isolated from 38 patients with OM and 62 patients with PJI (33 hips, 28 knees, 1 shoulder). A total of 61.4% of Enterobacteriaceae were susceptible both with ceftobiprole and ceftriaxone, 100% of P. aeruginosa were susceptible with ceftazidime and 83,3% with ceftobiptrole and finally 100% of Gram positive were susceptible both with ceftobiprole and vancomycin (susceptibility interpretation was based on EUCAST breakpoints). Conclusions. Our results suggest that ceftobiprole has a good in vitro activity against strains isolated from bone implant-associated infections. It could be an effective alternative to vancomycin and ceftriaxone or ceftazidime in post-operative treatment but pharmacokinetics and pharmacodynamics studies must be performed in bone tissue


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 565 - 565
1 Dec 2013
Ueda N Oe K Kawamura H Nakamura T Okamoto N Ueda Y Iida H
Full Access

Introduction:. The diagnosis of implant-associated infections is challenging, and the conventional culturing of periprosthetic tissue has been the gold standard for diagnosis of implant-associated infections. However, conventional diagnostic tests are inaccurate because the pathogenesis of implant-associated infection is related to microorganisms growing in biofilms. We compared culture of samples obtained by sonication of explanted implants to dislodge adherent bacteria from implants with conventional culture of periprosthetic tissue. The purpose of this study is to evaluate the results of sonication that is microbiological diagnostic method for implant-associated infections. Materials and Methods:. Between January 2013 and April 2013, a total of 19 consecutive patients underwent the removal of implants at our institution. There were 15 women and 4 men with a mean age of 71 years (32 to 90) at the time of the operation. Implants were removed because of aseptic loosening in 9 patients, infection in 6 patients, necrosis in 2 patients, dislocation in 1 patient and implant fracture in 1 patient. Removed implants, including 17 joint prostheses and 2 fracture fixation devices, were subjected to sonication in a BactoSonic (BANDELIN, Germany). Preoperative bacterial culture, intraoperative conventional culture of periprosthetic tissue, intraoperative culture of sonicate-fluid, and pathological examination were assessed. Results:. Of the 9 patients with aseptic loosening, 1 patient was positive for intraoperative conventional culture of periprosthetic tissue, and 2 patients were positive for intraoperative culture of sonicate-fluid. In the patient with negative culture of periprosthetic tissue and positive culture of sonicate-fluid, pathological findings indicated the presence of neutrophils in tissue specimen. Of the 6 patients with infection, 4 patients were positive for intraoperative conventional culture of periprosthetic tissue, and 3 patients were positive for intraoperative culture of sonicate-fluid. Of the 4 patients with necrosis, dislocation, and implant fracture, no patients were positive for intraoperative conventional culture of periprosthetic tissue or intraoperative culture of sonicate-fluid. Conclusion:. Culture of sonicate-fluid has been shown to improve the diagnosis of implant-associated infections. In the future, it may be common technique for diagnosis of implant-associated infections associated with biofilm, but this new technique needs further study


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 101 - 101
1 Nov 2021
Dubus M Varin-Simon J Papa S Gangloff S Mauprivez C Ohl X Reffuveille F Kerdjoudj H
Full Access

Introduction and Objective. Found in bone-associated prosthesis, Cutibacterium acnes (C. acnes) is isolated in more than 50% of osteoarticular prosthesis infections, particularly those involving shoulder prostheses. Ongoing controversies exist concerning the origin of C. acnes infection. Few reports construct a reasonable hypothesis about probable contaminant displaced from the superficial skin into the surgical wound. Indeed, despite strict aseptic procedures, transecting the sebaceous glands after incision might result in C. acnes leakage into the surgical wound. More recently, the presence of commensal C. acnes in deep intra-articular tissues was reported. C. acnes was thus detected in the intracellular compartment of macrophages and stromal cells in 62.5% of the tested patients who did not undergo skin penetration. Among bone stromal cells, mesenchymal stem cells (MSCs) are predominantly found in bone marrow and periosteum. MSCs are the source of osteogenic lines of cells capable of forming bone matter. In this study, the pathogenicity of C. acnes in bone repair context was investigated. Materials and Methods. Human bone marrow derived MSCs were challenged with C. acnes clinical strains harvested from non-infected bone site (Cb). The behaviour of Cb strain was compared to C. acnes took from orthopaedic implant-associated infection (Ci). The infective capabilities of both strains was determined following gentamicin-based antibiotic protection assay. The morphology and ultrastructural analysis of infected MSCs was performed respectively through CLSM pictures of Phalloidin. ®. stained MSCs cytoskeleton and DAPI labelled Cb, and transmission and scanning electron microscopies. The virulence of intracellular Ci and Cb (Ci-MSCs and Cb-MSCs) was investigated by biofilm formation on non-living bone materials; and the immunomodulatory response of infected MSCs was investigated (PGE-2 and IDO secretion detected by ELISA). Bone cells (osteoblasts and PMA differentiated macrophages) were then challenged with Cb-MSCs and Ci-MSCs. Intracellular accumulation of ROS within infected macrophages was assessed by flow cytometry after 2 h of infection and the catalase production by Cb-MSC and Ci-MSC was evaluated. Statistical analyses were performed using Mann & Whitney test. Results. Following MSCs infection by C. acnes, the rate of viable bacteria inside MSCs was about 4% and 6% for Cb and Ci, respectively. Cb showed however a lower invasiveness in comparison to Ci (0.6-fold, p=0.01), confirming the higher pathogenicity of Ci. The ultrastructural and morphology analysis of infected MSCs confirmed the presence of bacteria free in MSCs cytoplasm, localized between F-actin fibers of MSCs, which preserved their elongated morphology. Considering the high level of secreted immunomodulatory mediators (PGE-2 and IDO), our results suggest that Cb-infected MSCs could promote a transition of macrophages from a primarily pro-inflammatory M1 to a more anti-inflammatory M2 phenotype. In comparison with Cb, Cb-MSCs increased significantly the formation of biofilm on TA6V and PEEK but reduced the biofilm formation on 316L SS. Ci-MSCs showed a significant increase in biofilm formation on PEEK vs Ci, while no difference in biofilm formation was noticed on TA6V and 316L SS. Regarding the ability of MSCs bacteria to infect osteoblasts, our results showed a higher infective capabilities of Cb-MSCs versus Cb (>2-fold, p=0.02), while no difference was noticed between Ci and Ci-MSCs. Along with an increase in catalase production by Cb-MSCs, we noticed its higher persistence to macrophage degradation. Conclusions. Taken together, our results demonstrate a shift in commensal Cb to pathogenic following infection. Indeed, Cb- MSCs acquires features that (i) increase biofilm formation on orthopedic based materials, (ii) increase the osteoblast infection and (iii) develop resistance to the macrophage degradation, through the increase of catalase production. Overall, these results showed a direct impact of C. acnes on bone marrow derived MSCs, providing new insights into the development of C. acnes during implant-associated infections


Bone & Joint Research
Vol. 10, Issue 3 | Pages 218 - 225
1 Mar 2021
Wiesli MG Kaiser J Gautier E Wick P Maniura-Weber K Rottmar M Wahl P

Aims. In orthopaedic and trauma surgery, implant-associated infections are increasingly treated with local application of antibiotics, which allows a high local drug concentration to be reached without eliciting systematic adverse effects. While ceftriaxone is a widely used antibiotic agent that has been shown to be effective against musculoskeletal infections, high local concentrations may harm the surrounding tissue. This study investigates the acute and subacute cytotoxicity of increasing ceftriaxone concentrations as well as their influence on the osteogenic differentiation of human bone progenitor cells. Methods. Human preosteoblasts were cultured in presence of different concentrations of ceftriaxone for up to 28 days and potential cytotoxic effects, cell death, metabolic activity, cell proliferation, and osteogenic differentiation were studied. Results. Ceftriaxone showed a cytotoxic effect on human bone progenitor cells at 24 h and 48 h at concentrations above 15,000 mg/l. With a longer incubation time of ten days, subtoxic effects could be observed at concentrations above 500 mg/l. Gene and protein expression of collagen, as well as mineralization levels of human bone progenitor cells, showed a continuous decrease with increasing ceftriaxone concentrations by days 14 and 28, respectively. Notably, mineralization was negatively affected already at concentrations above 250 mg/l. Conclusion. This study demonstrates a concentration-dependent influence of ceftriaxone on the viability and mineralization potential of primary human bone progenitor cells. While local application of ceftriaxone is highly established in orthopaedic and trauma surgery, a therapeutic threshold of 250 mg/l or lower should diminish the risk of reduced osseointegration of prosthetic implants. Cite this article: Bone Joint Res 2021;10(3):218–225


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 77 - 77
24 Nov 2023
Oehen L Morgenstern M Wetzel K Goldenberger D Kühl R Clauss M Sendi P
Full Access

Aim. One of the surgical therapeutic options for periprosthetic joint infection (PJI) includes debridement, antibiotics, and implant retention (DAIR). Prognostically favorable criteria for DAIR include short duration of symptoms, stable implant, pathogen susceptible to a ‘biofilm-active’ antimicrobial agent, and intact soft-tissue conditions. Despite this, there is a proportion of failures after DAIR, possibly because the duration of infection is underestimated. With the hypothesis that the duration of infection correlates with the bacterial load, and hence, the bacterial load is associated with failure after DAIR, we aimed to investigate the association of bacterial load in the sonication fluid of mobile parts and clinical outcome after DAIR. Method. From our PJI cohort (2010–2021), patients with DAIR (both palliative and curative approaches) were reviewed retrospectively. Patients with hip, knee or shoulder arthroplasties fulfilling infection definition, available sonication results, and ≥2 years follow-up were included. Sonication results were categorized in ≤ or >1000 cfu/mL. Univariate analysis was performed to identify predictors for DAIR failure. Results. Out of 209 PJIs, we identified 96 patients (100 PJIs, 47.8%) with DAIR. In 67 (69.8%) patients with 71 PJIs, there was a follow-up of ≥2 years. The mean age was 72.7 (SD 12.99) years, 50% were male. The infection affected 36 hips (50.7%), 32 knees (45.1%) and 3 shoulders (4.2%). At follow-up, there were 29 (40.8%) cured and 42 (59.2%) failed cases. When comparing failed and cured cases, we found no difference in comorbidities and previously defined risk factors for PJI, ASA score, Charlson score, anatomic location, no. of previous surgeries, pathogenesis of infection or laboratory values. The proportion of patients with high bacterial load on mobile parts (i.e. >1000 cfu/mL) was significantly higher in the failed DAIR group than it was in the cured group (61.9% vs 20.7%, p<0.001). Conclusions. In this study, a high bacterial load in sonication fluid of mobile parts was associated with failure after DAIR in patients with PJI. Sonication may help to differentiate acute hematogenous seeding to the implant and late reactivation of a previously silent implant-associated infection


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 77 - 77
22 Nov 2024
Vidal LS Auñon A García AB Cañete JG Parron R Esteban-Moreno J
Full Access

Aim. To evaluate the bacterial counts of sonicatied implants in patients with osteoarticular infections. Various studies have demostrated the usefulness of sonication of retrieved implants in order to provide an accurate microbiological diagnosis. Although cutoff values for original sonicate counts have been established, the use of centrifugation may influence these values. Method. A retrospective, single-center study, including sonication fluid samples from implants removed between January 2011 and October 2023, was performed. Patients were diagnosed with implant-associated infection based on the criteria available at the time of diagnosis. Osteoarticular implants were sonicated following the protocol described by Esteban et al. Sonicated fluid was centrifuged for 20 minutes at 3000 x g, and the sediment was resuspended in 5 mL of phosphate buffer solution. Ten µl of the sample were streaked onto each medium for quantitative culture. Bacterial counts exceeding 100,000 CFU/mL were considered as 100,000 CFU/mL for statistical analysis. Results. The study included 457 sonication fluid samples. Of these, 316 samples were from patients with prosthetic joint infection (PJI), with 26.3 % diagnosed with acute PJI and 73.7 % with chronic PJI. Additionally, 141 samples were from patients with osteosynthesis infection. The median CFU/ml in the sonication fluid was 40,000 CFU/mL (IQR 1,000 CFU/mL-100,000 CFU/mL). No statistically significant difference was observed between the different types of implants (prosthesis vs. osteosynthesis, p=0.218). A trend of higher counts was noted for acute PJI compared to chronic PJI (р=0.052). Most infections were monomicrobial, but 16.2% were polymicrobial. Statistically significant higher bacterial counts were observed in polymicrobial infections compared to monomicrobial infections (р<0.005). Among monomicrobial infections, no differences were found between Gram-negative and Gram-positive microorganisms (р=0.416). No differences were also found between joints (knee vs. hip) (p=0.353). Conclusions. Significant variability was observed in the number of colonies detected in all samples, regardless of the type of implant, the number of microorganisms or the species identified. Higher counts were detected in polymicrobial infections, and a trend was also noted for higher counts in acute infections


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 4 - 4
22 Nov 2024
Pidgaiska O Goumenos S Dos Santos MV Trampuz A Stöckle U Meller S
Full Access

Introduction. Since the expanded war in Ukraine in 2022, explosives, mines, debris, blast waves, and other factors have predominantly caused injuries during artillery or rocket attacks. These injuries, such as those from shelling shrapnel, involve high-energy penetrating agents, resulting in extensive necrosis and notable characteristics like soft tissue defects and multiple fragmentary fractures with bone tissue defects and a high rate of infection complications caused by multi resistant gram-negative (MRGN) pathogens. Material and Methods. We conducted a prospective study at our center between March 2022 and December 2023. Out of the 56 patients from Ukraine, 21 met the inclusion criteria who had severe war injuries were included in the study. Each of these patients presented with multiple injuries to both bones and soft tissues, having initially undergone treatment in Ukraine involving multiple surgeries. The diagnosis of infection was established based on the EBJIS criteria. Prior to our treatment patients had undergone multiple revision surgeries, including debridement, biopsies, implant and fixator replacement. Additionally, soft tissue management required previously VAC therapy and flap reconstruction for successful treatment. Results. All 21 infections manifested as bone infections (11; 52%), followed by implant-associated infections (5; 24%), soft tissue infections (4; 19%), and septic arthritis (1; 5%). In all patients, the infection was polymicrobial, caused by 3- and 4-MRGN pathogens, as Klebsiella pneumonia 4MRGN, Proteus mirabilis 4MRGN, Enterobacter cloacae 4MRGN etc. Upon admission, all patients carried a diagnosis and exhibited signs indicative of chronic infection. 19 (90.5%) patients required complex antibiotic regimens combined with multiple wound revisions and debridements, changes of fixators and combination of systemic and local antibiotic therapy. In 6 patients (28%) high dosages of local antibiotics such as gentamycin, vancomycin and meropenem were incorporated into a carrier of bio-absorbable calcium sulfate, calcium sulfate/hydroxyapatite which were introduced into the hip joint, femoral canal or bone defect for dead space management during the surgery. When local antibiotics were administered at intervals, the microbiology results at implantation showed negative results. 2 (9%) patients had new infections (different site, different pathogens), 1 (4.8%) is still under the treatment. In 17 (81%) patients infection complications were treated successfully with no recurrence of infection. Conclusion. War injuries result in complex bone and soft-tissue infections caused by 3-, 4-MRGN pathogens. Addressing this challenge necessitates multidisciplinary approach with multiple, thorough surgical debridements, effective local, and systemic antimicrobial therapy. As for the outlook we can see potential in local antibiotic carriers


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 320 - 321
1 Jul 2011
Trampuz A Zimmerli W
Full Access

Implant-associated infections do not spontaneously cure. The reason for persistence in device-associated infections is the biofilm, a specialized form of bacterial growth on surfaces. The biofilm represents a survival form of bacteria which is highly resistant against most antibiotics, and can persist over months or years as low-grade infection. Bacteria in biofilms enter a metabolically inactive state, embedded in an amorphous substance, called biofilm matrix. Together they form a complex three-dimensional structure with rudimentary communication and circulation systems. As a rule, only a combined surgical and antimicrobial management can eradicate biofilms and cure implant-associated infection. In selected patients, implant infections can be cured without implant removal with early debridement and long-term antibiotic treatment acting against biofilms. In this presentation, common pitfalls and reasons for treatment failure will be outlined and discussed. Adequate diagnosis. Every prosthesis with early loosening (< 2 years after implantation) or persistent/increasing pain should rise the suspicion of an implant-associated infection, which may presents without systemic signs of infection (fever), and can manifest without increased leukocyte counts or C-reactive protein). In this case, periimplant infection must be actively searched. Preoperative diagnosis includes aspiration of the synovial fluid of larger joints for Gram stain and culture; cell count and differential; and crystals (if appropriate). Swabs of the sinus tract (fistula) should not be performed, since they may not represent the causing organisms of the bone- or implant-associated infection. Intraoperative diagnosis includes multiple tissue biopsies around the prosthesis (no swabs), histopathology of the periprosthetic tissue and sonication of the removed device or its parts (if the method is available). For low-virulent organisms (such as Staphylococcus epidermidis or Propionibacterium acnes) at least two positive specimens with the same organism or an additional criterion for infection (i.e. acute inflammation in the tissue histopathology, presence of intraoperative pus or fistula) is needed. For slow-growing organisms, long incubation is needed (14 days) in order to culture these slow-growing and fastidious pathogens. Antibiotics should be discontinued at least 2 weeks prior to culture sample in order to minimize false-negative results. Novel diagnostic tests include PCR, which can also detect non-growing microorganisms and can be used for tissue specimens, joint aspirate or sonication fluid. Adequate antibiotic therapy. The identification of the infecting pathogen is paramount for a successful treatment. Therefore, no empiric antibiotic therapy should be administered before diagnosis is microbiologically confirmed. Antibiotics administered for a secreting wound overlying an implant is a critical mistake, which makes the etiological diagnosis difficult. In addition, the risk of development of antimicrobial resistance is high, particularly for rifampin. Therefore, rifampin should not be administered as long as there is a contact between body surface and implant (e.g. open wound or wound dehiscence, fistula, VAC foam, drainage). In contrast, addition of rifampin is absolutely necessary for eradication of staphylococcal infections of implants in case of retention (see presentation from W. Zimmerli S02.KL1). Other common mistakes are short duration of antibiotic treatment (totally 3 months are needed for eradication of biofilm), low antibiotic dose (high dosing is needed to achieve sufficient concentration in bone) or switch from intravenous to oral antibiotics with insufficient bioavailability (such as oral betalactams) or inactivity against biofilms (such as cephalosporins, macrolides or clindamycin). Adequate surgical therapy. Immediate debridement is indicated, if there is a suspicion of implant-associated infection (wound dehiscence, persisting secretion, lack of postoperative decrease of CRP). A revision is needed for diagnostic (adequate microbiological diagnosis) and therapeutic purposes (mechanical reduction of bacteria). The implant can be retained, if the symptoms of infection are lasting < 3 weeks, the prosthesis is stable and the infecting pathogen is susceptible to anti-biofilm antibiotics (i.e. staphylococci susceptible to rifampin). Importantly, a loose prosthesis can not be salvaged and always needs to be exchanged. Antimicrobial suppression therapy has a low probability of success (failure rate approximately 80% after 2 years). The drainages should be kept in place as short as possible, i.e. in general not more than 3 days. Large soft tissue defects require coverage with a flap. In conclusion, using the proposed diagnostic and treatment algorithm (. Zimmerli et al. . NEJM. 2004. ; . 351. : . 1645. ), the long-term success rate of periprosthetic joint infection is 80–90%. To avoid failure, it is important to select the patient for the least invasive, but still appropriate surgical and antibiotic treatment regimen and to avoid mistakes