Background. Ankle and hindfoot fusion in the presence of large bony defects represents a challenging problem. Treatment options include acute shortening and fusion or void filling with metal cages or structural allograft, which both have historically low union rates.
Introduction:
Acetabular cages are necessary when an uncemented or cemented cup cannot be stabilised at the correct anatomic level.
Acetabular cages are necessary when an uncemented or cemented cup cannot be stabilised at the correct anatomic level.
The amount of bone loss due to implant failure, loosening, or osteolysis can vary greatly and can have a major impact on reconstructive options during revision total knee arthroplasty (TKA). Massive bone loss can threaten ligamentous attachments in the vicinity of the knee and may require use of components with additional constraint to compensate for associated ligamentous instability. Classification of bone defects can be helpful in predicting the complexity of the reconstruction required and in facilitating preoperative planning and implant selection. One very helpful classification of bone loss associated with TKA is the Anderson Orthopaedic Research Institute (AORI) Bone Defect Classification System as it provides the means to compare the location and extent of femoral and tibial bone loss encountered during revision surgery. In general, the higher grade defects (Type IIb or III) on both the femoral and tibial sides are more likely to require stemmed components, and may require the use of either structural graft or large augments to restore support for currently available modular revision components. Custom prostheses were previously utilised for massive defects of this sort, but more recently have been supplanted by revision TKA component systems with or without special metal augments or structural allograft. Options for bone defect management are: 1) Fill with cement; 2) Fill with cement supplemented by screws or K-wires; 3) Morselised bone grafting (for smaller, especially contained cavitary defects); 4) Small segment structural bone graft; 5)
Acetabular cages are necessary when an uncemented or cemented cup cannot be stabilised at the correct anatomic level.
Acetabular cages are necessary when an uncemented or cemented cup cannot be stabilised at the correct anatomic level.
Acetabular cages are necessary when an uncemented or cemented cup cannot be stabilised at the correct anatomic level.
Acetabular cages are necessary when an uncemented or cemented cup cannot be stabilised at the correct anatomic level.
The amount of bone loss due to implant failure, loosening, or osteolysis can vary greatly and can have a major impact on reconstructive options during revision total knee arthroplasty (TKA). Massive bone loss can threaten ligamentous attachments in the vicinity of the knee and may require use of components with additional constraint to compensate for associated ligamentous instability. Classification of bone defects can be helpful in predicting the complexity of the reconstruction required and in facilitating pre-operative planning and implant selection. One very helpful classification of bone loss associated with TKA is the Anderson Orthopaedic Research Institute (AORI) Bone Defect Classification System as it provides the means to compare the location and extent of femoral and tibial bone loss encountered during revision surgery. In general, the higher grade defects (Type IIb or III) on both the femoral and tibial sides are more likely to require stemmed components, and may require the use of either structural graft or large augments to restore support for currently available modular revision components. Custom prostheses were previously utilised for massive defects of this sort, but more recently have been supplanted by revision TKA component systems with or without special metal augments or structural allograft. Options for bone defect management are: 1) Fill with cement; 2) Fill with cement supplemented by screws or K-wires; 3) Morselised bone grafting (for smaller, especially contained cavitary defects); 4) Small segment structural bone graft; 5)
Femoral revision in cemented THA might include some technical difficulties, based on loss of bone stock and cement removal, which might lead to further loss of bone stock, inadequate fixation, cortical perforation or consequent fractures. Cemented THA has become an extremely successful operation with excellent long-term results. Although showing decreasing popularity in North America, it always remained a popular choice for the elderly patients in Europe and other parts of the world. Various older and recent studies presented excellent long-term results, for cemented fixation of the cup as well as the stem. Besides optimal component orientation, a proper cementing technique is of major importance to assure longevity of implant fixation. Consequently a meticulous bone bed preparation assures the mechanical interlock between the implant component, cement and the final bone bed. Pre-operative steps as proper implant sizing/ templating, ensuring an adequate cement mantle thickness, and hypotensive anaesthesia, minimizing bleeding at the bone cement interface, are of major importance. Additionally, femoral impaction grafting, in combination with a primary cemented stem, allows for femoral bone restoration due to incorporation and remodeling of the allograft bone by the host skeleton. Historically, it has been first performed and described in Exeter in 1987, utilizing a cemented tapered polished stem in combination with morselised fresh frozen bone grafts. The technique was refined by the development of designated instruments, which have been implemented by the Nijmegen group from Holland. Indications might include all femoral revisions with bone stock loss, while the Endo-Clinic experience is mainly based on revision of cemented stems. Cavitary bone defects affecting meta- and diaphysis leading to a wide or so called “drain pipe” femora, are optimal indications for this technique, especially in young patients. Contraindications are mainly: septical revisions, extensive circumferential cortical bone loss and noncompliance of the patient. The cement mantle is of importance, as it acts as the distributor of force between the stem and bone graft and seals the stem. A cement mantle of at least 2 mm has shown favorable results. Originally the technique is described with a polished stem. We use standard brushed stems with comparable results. Relevant complications include mainly femoral fractures due to the hardly impacted allograft bone. Subsidence of tapered polished implants might be related to cold flow within the cement mantle, however, could also be related to micro cement mantle fractures, leading to early failure. Subsidence should be less than 5 mm.
We report the use of contained impacted morsellized allograft to revise an aseptically loose, massive distal femoral endoprosthetic replacement in a 27-year old Caucasian lady. The prosthesis was inserted 4 years earlier, following neo-adjuvant chemotherapy and resection of a distal femoral high grade osteosarcoma.
The amount of bone loss due to implant failure, loosening, or osteolysis can vary greatly and can have a major impact on reconstructive options during revision total knee arthroplasty (TKA). Massive bone loss can threaten ligamentous attachments in the vicinity of the knee and may require use of components with additional constraint to compensate for associated ligamentous instability. Classification of bone defects can be helpful in predicting the complexity of the reconstruction required and in facilitating pre-operative planning and implant selection. One very helpful classification of bone loss associated with TKA is the Anderson Orthopaedic Research Institute (AORI) Bone Defect Classification System as it provides the means to compare the location and extent of femoral and tibial bone loss encountered during revision surgery. In general, the higher grade defects (Type IIb or III) on both the femoral and tibial sides are more likely to require stemmed components, and may require the use of either structural graft or large augments to restore support for currently available modular revision components. Custom prostheses were previously utilised for massive defects of this sort, but more recently have been supplanted by revision TKA component systems with or without special metal augments or structural allograft. Options for bone defect management are: 1) Fill with cement; 2) Fill with cement supplemented by screws or K-wires; 3) Morselised bone grafting (for smaller, especially contained cavitary defects); 4) Small segment structural bone graft; 5)
Restoration of bone stock is the single greatest challenge facing the revision hip surgeon today. This has been dealt with by means of impaction grafting with morsellised allograft from donor femoral heads. Alternatives to allograft have been sought. This study investigates the use of a porous biphasic ceramic in impaction grafting of the femur.
The amount of bone loss due to implant failure, loosening, or osteolysis can vary greatly and can have a major impact on reconstructive options during revision total knee arthroplasty (TKA). Massive bone loss can threaten ligamentous attachments in the vicinity of the knee and may require use of components with additional constraint to compensate for associated ligamentous instability. Classification of bone defects can be helpful in predicting the complexity of the reconstruction required and in facilitating pre-operative planning and implant selection. One very helpful classification of bone loss associated with TKA is the Anderson Orthopaedic Research Institute (AORI) Bone Defect Classification System as it provides the means to compare the location and extent of femoral and tibial bone loss encountered during revision surgery. In general, the higher grade defects (Type IIb or III) on both the femoral and tibial sides are more likely to require stemmed components, and may require the use of either structural graft or large augments to restore support for currently available modular revision components. Custom prostheses were previously utilised for massive defects of this sort, but more recently have been supplanted by revision TKA component systems with or without special metal augments or structural allograft. Options for bone defect management are: 1) Fill with cement; 2) Fill with cement supplemented by screws or K-wires; 3) Morselised bone grafting (for smaller, especially contained cavitary defects); 4) Small segment structural bone graft; 5)
Bone stock loss is a major challenge to the revision hip surgeon.
Femoral revision in cemented THA might include some technical difficulties, based on loss of bone stock and cement removal, which might lead to further loss of bone stock, inadequate fixation, cortical perforation or consequent fractures. Femoral impaction grafting, in combination with a primary cemented stem, allows for femoral bone restoration due to incorporation and remodeling of the allograft bone by the host skeleton. Historically, it has been first performed and described in Exeter in 1987, utilizing a cemented tapered polished stem in combination with morselised fresh frozen bone grafts. The technique was refined by the development of designated instruments, which have been implemented by the Nijmegen group from Holland. Indications might include all femoral revisions with bone stock loss, while the ENDO-Klinik experience is mainly based on revision of cemented stems. Cavitary bone defects affecting meta- and diaphysis leading to a wide or so called “drain pipe” femora, are optimal indications for this technique, especially in young patients. Contraindications are mainly: septical revisions, extensive circumferential cortical bone loss and noncompliance of the patient. Generally the technique creates a new endosteal surface to host the cemented stem by reconstruction of the cavitary defects with impacted morselised bone graft. This achieves primary stability and restoration of the bone stock. It has been shown, that fresh frozen allograft shows superior mechanical stability than freeze-dried allografts. Incorporation of these grafts has been described in 89%. Technical steps include: removal of failed stem and all cement, reconstruction of segmental bone defects with metal mesh (if necessary), preparation of fresh frozen femoral head allografts with bone mill, optimal bone chip diameter 2 – 5 mm, larger chips for the calcar area (6 – 8 mm), insertion of an intramedullary plug including central wire, 2 cm distal to the stem tip, introduction of bone chips from proximal to distal, impaction started by distal impactors over central wire, then progressively larger impactors proximal, insertion of a stem “dummy” as proximal impactor and space filler, removal of central wire, retrograde insertion of low viscosity cement (0.5 Gentamycin) with small nozzle syringe, including pressurization, insertion of standard cemented stem. The cement mantle is of importance, as it acts as the distributor of force between the stem and bone graft and seals the stem. A cement mantle of at least 2 mm has shown favorable results. Originally the technique is described with a polished stem. We use standard brushed stems with comparable results. Postoperative care includes usually touch down weight bearing for 6–8 weeks, followed by 4–6 weeks of gradually increased weightbearing with a total of 12 weeks on crutches. Survivorship with a defined endpoint as any femoral revision after 10 year follow up has been reported by the Exeter group being over 90%. While survivorship for revision related to aseptic loosening being above 98%. Within the last years various other authors and institutions reported similar excellent survivorships, above 90%. In addition a long term follow up by the Swedish arthroplasty registry in more than 1180 patients reported a cumulative survival rate of 94% after 15 years.
Femoral revision in cemented THA might include some technical difficulties, based on loss of bone stock and cement removal, which might lead to further loss of bone stock, inadequate fixation, cortical perforation or consequent fractures. Femoral impaction grafting, in combination with a primary cemented stem, allows for femoral bone restoration due to incorporation and remodelling of the allograft bone by the host skeleton. Historically it has been first performed and described in Exeter in 1987, utilizing a cemented tapered polished stem in combination with morselised fresh frozen bone grafts. The technique was refined by the development of designated instruments, which have been implemented by the Nijmegen group from Holland. Indications might include all femoral revisions with bone stock loss, while the Endo-Clinic experience is mainly based on revision of cemented stems. Cavitary bone defects affecting meta- and diaphysis leading to a wide or so called “drain pipe” femora, are optimal indications for this technique, especially in young patients. Contraindications are mainly: septical revisions, extensive circumferential cortical bone loss and noncompliance of the patient. Generally, the technique creates a new endosteal surface to host the cemented stem by reconstruction of the cavitary defects with impacted morselised bone graft. This achieves primary stability and restoration of the bone stock. It has been shown, that fresh frozen allograft shows superior mechanical stability than freeze-dried allografts. Incorporation of these grafts has been described in 89%. Technical steps include: removal of failed stem and all cement, reconstruction of segmental bone defects with metal mesh (if necessary), preparation of fresh frozen femoral head allografts with bone mill, optimal bone chip diameter 2–5 mm, larger chips for the calcar area (6–8 mm), insertion of an intramedullary plug including central wire, 2 cm distal the stem tip, introduction of bone chips from proximal to distal, impaction started by distal impactors over central wire, then progressive larger impactors proximal, insertion of a stem “dummy” as proximal impactor and space filler, removal of central wire, retrograde insertion of low viscosity cement (0.5 Gentamycin) with small nozzle syringe, including pressurization, and insertion of standard cemented stem. The cement mantle is of importance, as it acts as the distributor of force between the stem and bone graft and seals the stem. A cement mantle of at least 2 mm has shown favorable results. Post-operative care includes usually touch down weightbearing for 6–8 weeks, followed by 4–6 weeks of gradually increased weightbearing with a total of 12 weeks on crutches. Relevant complications include mainly femoral fractures due to the hardly impacted allograft bone. Subsidence of tapered polished implants might be related to cold flow within the cement mantle, however, could also be related to micro cement mantle fractures, leading to early failure. Subsidence should be less than 5 mm. Survivorship with a defined endpoint as any femoral revision after 10-year follow up has been reported by the Exeter group being over 90%, while survivorship for revision as aseptic loosening being above 98%. Within the last years various other authors and institutions reported about similar excellent survivorships, above 90%. In addition, a long-term follow up by the Swedish arthroplasty registry in more than 1180 patients reported a cumulative survival rate of 94% after 15 years.