Advertisement for orthosearch.org.uk
Results 1 - 20 of 2352
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 69 - 69
17 Apr 2023
Day G Jones A Mengoni M Wilcox R
Full Access

Autologous osteochondral grafting has demonstrated positive outcomes for treating articular cartilage defects by replacing the damaged region with a cylindrical graft consisting of bone with a layer of cartilage, taken from a non-loadbearing region of the knee. Despite positive clinical use, factors that cause graft subsidence or poor integration are relatively unknown. The aim of this study was to develop finite element (FE) models of osteochondral grafts within a tibiofemoral joint and to investigate parameters affecting osteochondral graft stability. Initial experimental tests on cadaveric femurs were performed to calibrate the bone properties and graft-bone frictional forces for use in corresponding FE models, generated from µCT scan data. The effects of cartilage defects and osteochondral graft repair were measured by examining contact pressure changes using in vitro tests on a single cadaveric human tibiofemoral joint. Six defects were created in the femoral condyles which were subsequently treated with osteochondral autografts or metal pins. Matching µCT scan-based FE models were created, and the contact patches were compared. Sensitivity to graft bone properties was investigated. The bone material properties and graft-bone frictional forces were successfully calibrated from the initial tests with good resulting levels of agreement (CCC=0.87). The tibiofemoral joint experiment provided a range of cases to model. These cases were well captured experimentally and represented accurately in the FE models. Graft properties relative to host bone had large effects on immediate graft stability despite limited changes to resultant cartilage contact pressure. Model confidence was built through extensive validation and sensitivity testing, and demonstrated that specimen-specific properties were required to accurately represent graft behaviour. The results indicate that graft bone properties affect the immediate stability, which is important for the selection of allografts and design of future synthetic grafts. Acknowledgements. Supported by the EPSRC-EP/P001076


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 100 - 100
1 Mar 2017
Gabaran N Mirghasemi S Rashidinia S Sadeghi M Talebizadeh M
Full Access

Background. Surgical reconstruction of the anterior cruciate ligament is a common practice to treat the disability or chronic instability of the knee. Several factors associated with success or failure of the ACL reconstruction, including surgical technique and graft material and graft tension. We aimed to show how we can optimize the graft properties and achieve better post surgical outcomes during ACL reconstruction using 3-dimensional computational finite element simulation. Methods. In this paper, 3-dimensional model of the knee was constructed to investigate the effect of graft tensioning on the knee joint biomechanics. Four different grafts were compared: 1) bone-patellar tendon-bone graft (BPTB) 2) Hamstring tendon 3) BPTB and a band of gracilis 4) Hamstring and a band of gracilis. The initial graft tension was set as “0, 20, 40, or 60N”. The anterior loading was set to 134 N. Findings. Our study shows that the use of the discarded gracilis tendon, which usually excised after graft fixation, could be associated with a host of merits. Our results show that preserving this excess part of gracilis would decrease the required pretention load and, subsequently, could optimize biomechanical properties of the knee. Conclusion. Required pretension during surgery will have decreased significantly by adding a band of gracilis to the proper graft. Therefore, in addition to achieving normal stability of the knee, we can have lower risk of degradation


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_7 | Pages 46 - 46
1 Jul 2022
Soumpasis K Duncan K Wilson AJ Risebury MJ Yasen SK
Full Access

Abstract. Introduction. We present a case series of patients that underwent knee ligament reconstruction with graft reinforcement using FibreTape (Arthrex), a 2mm wide non-biodegradable polyethylene tape. Outcomes and safety of this novel technique are reported. Methods. Data were collected from a prospectively maintained database from 03/2011 to 11/2019. All skeletally mature patients that underwent reinforced knee ligament reconstruction surgery at Basingstoke and North Hampshire Hospital were included. The cohort was interrogated for outcomes including failure, complications, and subjective patient reported outcomes at 6,12 and 24 months postoperatively. Results. 438 patients were eligible. The mean age was 33.4 years and 68% of them were males. This included 171 ACL reconstructions, 96 ACL with anterolatreal ligament reconstructions, 59 bicruciate reconstructions, 30 ACL with posterolateral corner, 49 posterior cruciate ligament with one other ligament and 33 other ligament reconstruction. Allograft was used for 125 patients. 338 cases related to primary reconstruction. The overall complication rate was 5.3%, with a 2.1% re-rupture rate. There were 9 patients with a re-rupture and 5 of them had undergone multiligament reconstruction. We found a statistically significant improvement in all subjective scoring indices post-operatively up to 2 years. There were no complications directly related to the use of ligament reinforcement. Conclusion. Graft reinforcement is a safe option in the management of knee ligament injuries. Encouraging results were observed in patient reported outcomes. Reinforcement is technically reproducible and may represent an answer for graft failure rates, especially in multiligament reconstructions. Further application and evaluation is necessary to confirm its benefit


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_3 | Pages 5 - 5
23 Jan 2024
Awad F Khan F McIntyre J Hathaway L Guro R Kotwal R Chandratreya A
Full Access

Introduction. Anterior cruciate ligament (ACL) injuries represent a significant burden of disease to the orthopaedic surgeon and often necessitate surgical reconstruction in the presence of instability. The hamstring graft has traditionally been used to reconstruct the ACL but the quadriceps tendon (QT) graft has gained popularity due to its relatively low donor site morbidity. Methods. This is a single centre comparative retrospective analysis of prospectively collected data of patients who had an ACL reconstruction (either with single tendon quadrupled hamstring graft or soft tissue quadriceps tendon graft). All surgeries were performed by a single surgeon using the All-inside technique. For this study, there were 20 patients in each group. All patients received the same post-operative rehabilitation protocol and were added to the National Ligament Registry to monitor their patient related outcome scores (PROM). Results. The average age of patients in the QT group was 29 years (16 males, 4 females) and in the hamstring group was 28 years (18 males, 2 females). The most common mechanism of injury in both groups was a contact twisting injury. There were no statistical differences between the two patient groups in regards to PROMS and need for further revision surgery as analysed on the National Ligament Registry. Conclusions. The all soft tissue QT graft seems to be equivocal to quadrupled hamstring graft in terms of patient function and recovery graft characteristics. Further research may be needed to elucidate the long-term results of the all soft tissue QT graft given its recent increase in use


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_IX | Pages 79 - 79
1 Mar 2012
Jneidi M Mahmud H Adra K
Full Access

Purpose of Study. 1- To introduce a new graft technique for ACL reconstruction using the patellar tendon with its attachment on the tibial tuberosity as bone-tendon (B PT) auto graft sparing the patella. 2-To assess the above described technique prospectively in a group of patients with ACL deficient knees. Type of study. Prospective case series of a newly describedACL graft technique. Material and methods. 44 patients with ACL deficient knee (with no other ligament injuries) were recruited to have ACL reconstruction using the above mentioned graft technique, there was 39 males and 5 females, average age at the index surgery was 24,4 year (range 20-40), the average time from injury to operation was 4 months (range 1 week to 1 year), the average follow up period was 30 months (ranged 24-35), there was 19 patients with isolated ACL injury and 25 with associated intra articular pathology including 22 meniscal tear, 8 with articular cartilage injury (3 of them associated with the meniscal tears). Those injuries were treated with meniscal repair (12 cases), partial menisectomy (10 cases), debridement and shaving +/− micro fracture technique for the articular cartilage injuries. Results. at the final follow up all patients were satisfied with their knees, the IKDC improved from 68 +- 2.8(pre-op) to 92 +- 2.7 (CI-95%), and Lysholm score from 65 +- 3.2 to 93 +- 3(CI-95%) at the final visit. Anterior knee pain was reported in 4 patients (9%) on moderate to strenuous activities. 7 patients (16%) could not return to their pre-injury activity level. The mean difference in KT-1000 measurement was 2 +- 0.8. Conclusion. our technique is effective with compatible results with other ACL graft's technique with less complications rate when compared with PBTB auto graft, it avoids the remote incidence of patellar fractures, and reducing the incidence of anterior knee pain


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_II | Pages 155 - 155
1 Apr 2005
MacDonald A Venner R
Full Access

Aim: To compare the outcome of primary ACL reconstruction in patients who had either an autograft or allograft ACL procedure for symptomatic instability. Methods: 21 patients reviewed and assessed between 2 and 8 years post ACL reconstruction using patient centred scoring methods. Results: 21 patients underwent isolated primary ACL reconstruction. 14 patients underwent reconstruction with autologous patellar tendon “bone-tendon-bone” ipsilateral graft (mean time post op 3.55 years) and 7 had “bone-tendon-bone” allografts (mean time post op 2.13 years). Both operations were performed through an open approach. Previously validated Knee Outcome Survey of the Activities of Daily Living Scale questionnaires were completed for all patients and also a single score for overall satisfaction with the outcome. Overall levels of patient satisfaction and function were good. Testing the data with a one-sample t-test showed that donor graft patients showed higher levels of satisfaction, higher knee scores and less pain than autologous graft patients (p< 0.01). These data suggest that although autologous grafts are more commonly performed, there is an improved outcome in the group of patients following donor grafting of the ACL


Increasing expectations from arthroscopic anterior cruciate ligament (ACL) reconstructions require precise knowledge of technical details such as minimum intra-femoral tunnel graft lengths. A common belief of having ≥20mm of grafts within the femoral tunnel is backed mostly by hearsay rather than scientific proof. We examined clinico-radiological outcomes in patients with intra-femoral tunnel graft lengths <20 and ≥20mm. Primary outcomes were knee scores at 1-year. Secondarily, graft revascularization was compared using magnetic resonance imaging (MRI). We hypothesized that outcomes would be independent of intra-femoral tunnel graft lengths. This prospective, single-surgeon, cohort study was conducted at a tertiary care teaching centre between 2015–2018 after obtaining ethical clearances and consents. Eligible arthroscopic ACL reconstruction patients were sequentially divided into 2 groups based on the intra-femoral tunnel graft lengths (A: < 20 mm, n = 27; and B: ≥ 20 mm, n = 25). Exclusions were made for those > 45 years of age, with chondral and/or multi-ligamentous injuries and with systemic pathologies. All patients were postoperatively examined and scored (Lysholm and modified Cincinnati scores) at 3, 6 and 12 months. Graft vascularity was assessed by signal-to-noise quotient ratio (SNQR) using MRI. Statistical significance was set at p<0.05. Age and sex-matched patients of both groups were followed to 1 year (1 dropout in each). Mean femoral and tibial tunnel diameters (P =0.225 and 0.595) were comparable. Groups A (<20mm) and B (≥20mm) had 27 and 25 patients respectively. At 3 months, 2 group A patients and 1 group B patient had grade 1 Lachman (increased at 12 months to 4 and 3 patients respectively). Pivot shift was negative in all patients. Lysholm scores at 3 and 6 months were comparable (P3= 0.195 and P6= 0.133). At 1 year both groups showed comparable Cincinnati scores. Mean ROM was satisfactory (≥130 degrees) in all but 2 patients of each group (125–130 degrees). MRI scans at 3 months and 1 year observed anatomical tunnels in all without any complications. Femoral tunnel signals in both groups showed a fall from 3–12 months indicating onset of maturation of graft at femoral tunnel. Our hypothesis, clinical and radiological outcomes would be independent of intra-tunnel graft lengths on the femoral aspect, did therefore prove correct. Intra-femoral tunnel graft lengths of <20 mm did not compromise early clinical and functional outcomes of ACL reconstructions. There seems to be no minimum length of graft within the tunnel below which suboptimal results should be expected


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_1 | Pages 213 - 213
1 Jan 2013
Ajuied A Norris M Wong F Clements J Back D Davies A
Full Access

Introduction. The advent of double bundle ACL (Anterior Cruciate Ligament) reconstruction had been hailed as potentially allowing for more anatomically and physiologically functioning graft, however until recently there had been little evidence of enhanced functional outcomes. The aim of this study is to explore whether the dimensions of hamstring two strand single bundle grafts, are predictive of the combined four strand single bundle graft that results from combining the single bundle grafts, as well as the impact of double bundle grafts upon the available healing and attachment area within the bony tunnels. Methods. Grafts of all likely two strand single bundle graft sizes, measured to the nearest 0.5mm in diameter using unslotted sizing block, were prepared using porcine flexor tendons,. These two strand single bundles were then systematically combined, and re-measured. By geometrical calculation, the sum of the circumferences of the two, two strand double bundle grafts were compared to the combined four strand single bundle graft formed by combining the two smaller bundles. Results. Measuring to the closest 0.5mm, we identified that the predicted four strand single bundle diameters were statistically larger (P < 0.001) than those that were measured. Geometric assessment reveals that dividing a four stand single bundle graft into it's two stand double bundle components, results in an increase in total graft circumference of 32% to 41%. Conclusions. We identified a statistically significant difference between measured and predicted four strand single bundle graft sizes. This result suggests that the viscoelastic properties of the tendon tissue increases as the cross sectional area of the graft increases. Our geometric assessment also demonstrates an increase in available graft to bone contact and healing area, of between 32% to 41%. Therefore one may theorise that double bundle ACL reconstruction results in earlier attainment of graft integration


Bone & Joint Research
Vol. 12, Issue 12 | Pages 722 - 733
6 Dec 2023
Fu T Chen W Wang Y Chang C Lin T Wong C

Aims. Several artificial bone grafts have been developed but fail to achieve anticipated osteogenesis due to their insufficient neovascularization capacity and periosteum support. This study aimed to develop a vascularized bone-periosteum construct (VBPC) to provide better angiogenesis and osteogenesis for bone regeneration. Methods. A total of 24 male New Zealand white rabbits were divided into four groups according to the experimental materials. Allogenic adipose-derived mesenchymal stem cells (AMSCs) were cultured and seeded evenly in the collagen/chitosan sheet to form cell sheet as periosteum. Simultaneously, allogenic AMSCs were seeded onto alginate beads and were cultured to differentiate to endothelial-like cells to form vascularized bone construct (VBC). The cell sheet was wrapped onto VBC to create a vascularized bone-periosteum construct (VBPC). Four different experimental materials – acellular construct, VBC, non-vascularized bone-periosteum construct, and VBPC – were then implanted in bilateral L4-L5 intertransverse space. At 12 weeks post-surgery, the bone-forming capacities were determined by CT, biomechanical testing, histology, and immunohistochemistry staining analyses. Results. At 12 weeks, the VBPC group significantly increased new bone formation volume compared with the other groups. Biomechanical testing demonstrated higher torque strength in the VBPC group. Notably, the haematoxylin and eosin, Masson’s trichrome, and immunohistochemistry-stained histological results revealed that VBPC promoted neovascularization and new bone formation in the spine fusion areas. Conclusion. The tissue-engineered VBPC showed great capability in promoting angiogenesis and osteogenesis in vivo. It may provide a novel approach to create a superior blood supply and nutritional environment to overcome the deficits of current artificial bone graft substitutes. Cite this article: Bone Joint Res 2023;12(12):722–733


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 63 - 63
7 Aug 2023
Kumar D Agarwal A Kushwaha N
Full Access

Abstract. Purpose. Since arthroscopic reconstruction of the anterior cruciate ligament (ACL) started, the use of peroneus longus grafts for primary ACL reconstruction (ACLR) was never thought of as there is very scant literature on it. So, our study aims to compare the functional outcome and complications in patients with ACL injury managed by ACLR with peroneus longus tendon (PLT) and hamstring tendons (HT) respectively. Materials and Methods. Patients with 16–50 years of either gender presenting with symptomatic ACL deficiency were admitted for arthroscopic single bundle ACLR and allocated into two groups (PLT and HT) operated and observed. Functional scores (IKDC and Lysholm score), clinical knee evaluation, donor site morbidity (AOFAS score) and thigh circumference were recorded preoperatively and at six months, one year post-operatively. The same post-op rehabilitation protocol was followed in both groups. Results. 194 patients (hamstring n=96, peroneus n=98) met the inclusion criteria. There were no significant differences between the pre-op, six months post-op and one-year postoperative score between the hamstring and peroneus longus groups in the IKDC (p=0.356) and Lysholm knee score (p=0.289). The mean for the AOFAS was 99.05±3.56 and 99.80±0.70 in the PLT and HT group respectively showing no statistical difference, with a significant improvement in thigh muscle wasting among the PLT group at final follow-up (p<0.001). Conclusion. We observed similar knee stability, functional outcome and no obvious donor site morbidity among both groups and recommend that a PL graft may be a safe, effective, and viable option for arthroscopic single bundle ACL reconstruction


Bone & Joint Research
Vol. 8, Issue 11 | Pages 518 - 525
1 Nov 2019
Whitaker S Edwards JH Guy S Ingham E Herbert A

Objectives. This study investigated the biomechanical performance of decellularized porcine superflexor tendon (pSFT) grafts of varying diameters when utilized in conjunction with contemporary ACL graft fixation systems. This aimed to produce a range of ‘off-the-shelf’ products with predictable mechanical performance, depending on the individual requirements of the patient. Methods. Decellularized pSFTs were prepared to create double-bundle grafts of 7 mm, 8 mm, and 9 mm diameter. Femoral and tibial fixation systems were simulated utilizing Arthrex suspension devices and interference screws in bovine bone, respectively. Dynamic stiffness and creep were measured, followed by ramp to failure from which linear stiffness and load at failure were measured. The mechanisms of failure were also recorded. Results. Dynamic stiffness was found to increase with greater graft diameter, with significant differences between all groups. Conversely, dynamic creep reduced with increasing graft diameter with significant differences between the 7 mm and 9 mm groups and the 8 mm and 9 mm groups. Significant differences were also found between the 7 mm, 8 mm, and 9 mm groups for linear stiffness, but no significant differences were found between groups for load at failure. The distribution of failure mechanisms was found to change with graft diameter. Conclusion. This study showed that decellularized pSFTs demonstrate comparable biomechanical properties to other ACL graft options and are a potentially viable option for ACL reconstruction. Although grafts can be stratified by their diameter to provide varying biomechanical properties, it may be more appropriate to alter the fixation technique to stratify for a greater diversity of biomechanical requirements. Cite this article: Bone Joint Res 2019;8:518–525


Abstract. Objectives. To determine the effectiveness of LIA compared to ACB in providing pain relief and reducing opiates usage in hamstring graft ACL reconstructions. Materials and Methods. In a consecutive series of hamstring graft ACL reconstructions, patients received three different regional and/or anaesthetic techniques for pain relief. Three groups were studied: group 1: general anaesthetic (GA)+ ACB (n=38); group 2: GA + ACB + LIA (n=31) and group 3: GA+LIA (n=36). ACB was given under ultrasound guidance. LIA involved infiltration at skin incision site, capsule, periosteum and in the hamstring harvest tunnel. Analgesic medications were similar between the three groups as per standard multimodal analgesia (MMA). Patients were similar in demographics distribution and surgical technique. The postoperative pain and total morphine requirements were evaluated and recorded. The postoperative pain was assessed using the visual analogue scores (VAS) at 0hrs, 2hrs, 4hrs, weight bearing (WB) and discharge (DC). Results. There was no statistically significant difference in opiates intake amongst the three groups. When comparing VAS scores; there were no statistical difference between the groups at any of the time intervals that VAS was measured. However, the GA+LIA group hospital's LOS (m=2.31hrs, SD=0.75) was almost half that of GA+ACB group (m=4.24hrs, SD=1.08); (conditions t(72)=8.88; p=0.000). There was no statistical significance in the incidence of adverse effects amongst the groups. Conclusion. The LIA technique provided equally good pain relief following hamstring graft ACL reconstructions when compared to ACB, while allowing for earlier rehabilitation, mobilisation and discharge


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 99 - 99
23 Feb 2023
Woodfield T Shum J Linkhorn W Gadomski B Puttlitz C McGilvray K Seim H Nelson B Easley J Hooper G
Full Access

Polyetheretherketone (PEEK) interbody fusion cages combined with autologous bone graft is the current clinical gold standard treatment for spinal fusion, however, bone graft harvest increases surgical time, risk of infection and chronic pain. We describe novel low-stiffness 3D Printed titanium interbody cages without autologous bone graft and assessed their biological performance in a pre-clinical in vivo interbody fusion model in comparison to the gold standard, PEEK with graft. Titanium interbody spacers were 3D Printed with a microporous (Ti1: <1000μm) and macroporous (Ti2: >1000μm) design. Both Ti1 and Ti2 had an identical elastic modulus (stiffness), and were similar to the elastic modulus of PEEK. Interbody fusion was performed on L2-L3 and L4-L5 vertebral levels in 24 skeletally mature sheep using Ti1 or Ti2 spacers, or a PEEK spacer filled with iliac crest autograft, and assessed at 8 and 16 weeks. We quantitatively assessed bone fusion, bone area, mineral apposition rate and bone formation rate. Functional spinal units were biomechanically tested to analyse range of motion, neutral zone, and stiffness. Results: Bone formation in macroporous Ti2 was significantly greater than microporous Ti1 treatments (p=.006). Fusion scores for Ti2 and PEEK demonstrated greater rates of bone formation from 8 to 16 weeks, with bridging rates of 100% for Ti2 at 16 weeks compared to just 88% for PEEK and 50% for Ti1. Biomechanical outcomes significantly improved at 16 versus 8 weeks, with no significant differences between Ti and PEEK with graft. This study demonstrated that macroporous 3D Printed Ti spacers are able to achieve fixation and arthrodesis with complete bone fusion by 16 weeks without the need for bone graft. These significant data indicate that low-modulus 3D Printed titanium interbody cages have similar performance to autograft-filled PEEK, and could be reliably used in spinal fusion avoiding the complications of bone graft harvesting


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 72 - 72
1 Jul 2020
Kerslake S Tucker A Heard SM Buchko GM Hiemstra LA Lafave M
Full Access

The primary purpose of this study was to assess whether patients presenting with clinical graft laxity following primary anatomic anterior cruciate ligament (ACL) reconstruction using hamstring autograft reported a significant difference in disease-specific quality-of-life (QOL) as measured by the ACL-QOL questionnaire. Clinical ACL graft laxity was assessed in a cohort of 1134/1436 (79%) of eligible patients using the Lachman and Pivot-shift tests pre-operatively and at 12- and 24-months following ACL reconstruction. Post-operative ACL laxity was assessed by an orthopaedic surgeon and a physical therapist who were blinded to each other's examination. If there was a discrepancy between the clinical examination findings from these two assessors, then a third impartial examiner assessed the patient to ensure a grading consensus was reached. Patients completed the ACL-QOL questionnaire pre-operatively, and 12- and 24-months post-operatively. Descriptive statistics were used to assess patient demographics, rate of post-operative ACL graft laxity, surgical failures, and ACL-QOL scores. A Spearman rho correlation coefficient was utilised to assess the relationships between ACL-QOL scores and the Lachman and Pivot-shift tests at 24-months post-operative. An independent t-test was used to determine if there were differences in the ACL-QOL scores of subjects who sustained a graft failure compared to the intact graft group. ACL-QOL scores and post-operative laxity were assessed using a one-way analysis of variance (ANOVA). There were 70 graft failures (6.17%) in the 1134 patients assessed at 24-months. A total of 226 patients (19.9%) demonstrated 24-months post-operative ACL graft laxity. An isolated positive Lachman test was assessed in 146 patients (12.9%), an isolated positive Pivot-shift test was apparent in 14 patients (1.2%), and combined positive Lachman and Pivot-shift tests were assessed in 66 patients (5.8%) at 24-months post-operative. There was a statistically significant relationship between 24-month post-operative graft laxity and ACL-QOL scores (p < 0.001). Specifically, there was a significant correlation between the ACL-QOL and the Lachman test (rho = −0.20, p < 0.001) as well as the Pivot-shift test (rho = −0.22, p < 0.001). There was no significant difference between the scores collected from the graft failure group prior to failure occurring (mean = 74.38, SD = 18.61), and the intact graft group (mean = 73.97, SD = 21.51). At 24-months post-operative, the one-way ANOVA demonstrated a statistically significant difference between the ACL-QOL scores of the no laxity group (mean = 79.1, SD = 16.9) and the combined positive Lachman and Pivot-shift group (mean = 68.5, SD = 22.9), (p = 0, mean difference = 10.6). Two-years post ACL reconstruction, 19.9% of patients presented with clinical graft laxity. Post-operative graft laxity was significantly correlated with lower ACL-QOL scores. The difference in ACL-QOL scores for patients with an isolated positive Lachman or Pivot-shift test did not meet the threshold of a clinically meaningful difference. Patients with clinical laxity on both the Lachman and Pivot-shift tests demonstrated the lowest patient-reported ACL-QOL scores, and these results exceeded the minimal clinically important difference


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 116 - 116
1 Mar 2021
van Groningen B van der Steen MC Janssen DM van Rhijn LW van der Linden T Janssen RPA
Full Access

The purpose of this investigation was to evaluate systematically the literature concerning biopsy, MRI signal to noise quotient (SNQ) and clinical outcomes in graft-maturity assessment after autograft anterior cruciate ligament reconstruction (ACLR) and their possible relationships. Methods: The systematic review was reported and conducted according to the PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) guidelines. Studies through May 2019 evaluating methods of intra-articular ACL autograft maturity assessment were considered for inclusion. Eligible methods were histologic studies of biopsy specimens and conventional MRI studies reporting serial SNQ and/ or correlation with clinical parameters. Ten biopsy studies and 13 imaging studies, with a total of 706 patients, met the inclusion criteria. Biopsy studies show that graft remodeling undergoes an early healing phase, a phase of remodeling or proliferation and a ligamentization phase as an ongoing process even 1 year after surgery. Imaging studies showed an initial increase in SNQ, peaking at approximately 6 months, followed by a gradual decrease over time. There is no evident correlation between graft SNQ and knee stability outcome scores at the short- and long-term follow-up after ACLR. The remodeling of the graft is an ongoing process even 1 year after ACLR, based on human biopsy studies. MRI SNQ peaked at approximately 6 months, followed by a gradual decrease over time. Heterogeneity of the MRI methods and technical restrictions used in the current literature limit prediction of graft maturity and clinical and functional outcome measures by means of MRI graft SNQ after ACLR


Abstract. Objectives. To determine the effectiveness of LIA compared to ACB in providing pain relief and reducing opiates usage in hamstring graft ACL reconstructions. Materials and Methods. In a consecutive series of hamstring graft ACL reconstructions, patients received three different regional and/or anaesthetic techniques for pain relief. Three groups were studied: group 1: general anaesthetic (GA)+ ACB (n=38); group 2: GA + ACB + LIA (n=31) and group 3: GA+LIA (n=36). ACB was given under ultrasound guidance. LIA involved infiltration at skin incision site, capsule, periosteum and in the hamstring harvest tunnel. Analgesic medications were similar between the three groups as per standard multimodal analgesia (MMA). Patients were similar in demographics distribution and surgical technique. The postoperative pain and total morphine requirements were evaluated and recorded. The postoperative pain was assessed using the visual analogue scores (VAS) at 0hrs, 2hrs, 4hrs, weight bearing (WB) and discharge (DC). Results. There was no statistically significant difference in opiates intake amongst the three groups. When comparing VAS scores; there were no statistical difference between the groups at any of the time intervals that VAS was measured. However, the GA+LIA group hospital's LOS (m=2.31hrs, SD=0.75) was almost half that of GA+ACB group (m=4.24hrs, SD=1.08); (conditions t(72)=8.88; p=0.000). There was no statistical significance in the incidence of adverse effects amongst the groups. Conclusion. The LIA technique provided equally good pain relief following hamstring graft ACL reconstructions when compared to ACB, while allowing for earlier rehabilitation, mobilisation and discharge


Abstract. Background. Extracorporeal radiation therapy (ECRT) has been reported as an oncologically safe and effective reconstruction technique for limb salvage in diaphyseal sarcomas with promising functional results. Factors affecting the ECRT graft-host bone incorporation have not been fully investigated. Methods. In our series of 51 patients of primary bone tumors treated with ECRT, we improvised this technique by using a modified V-shaped osteotomy, additional plates and intra-medullary fibula across the diaphyseal osteotomy in an attempt to increase the stability of fixation, augment graft strength and enhance union at the osteotomy sites. We analyzed our patients for various factors that affected union time and union rate at the osteotomy sites. Results. On univariate analysis, age <20 years, metaphyseal osteotomy site, V-shaped diaphyseal osteotomy, extramedullary plate fixation and use of additional plate at diaphyseal ostetomy had a significantly faster time to union while gender, tumor type, resection length, chemotherapy and use of intra-medullary fibula did not influence union time. In multivariate analysis, metaphyseal ostoeotomy, V-shaped diaphyseal osteotomy and use of additional plate at diaphyseal ostetomy were the independent factors with favourable time to union. Although the rate of union was higher with V-shaped diaphyseal osteotomy and use of additional plate and intra-medullary fibula at diaphyseal ostetomy, this difference could not be established statistically. None of the analyzed factors apparently affected the union rate in univariate analysis. Conclusion. Judicious choice of osteosynthesis and augmentation of ECRT graft can enhance incorporation with reduced complications and good functional outcome


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 122 - 122
1 Dec 2020
Huri PY Talak E Kaya B Huri G
Full Access

Articular cartilage is often damaged, and its treatment is usually performed by surgical operation. Today, tissue engineering offers an alternative treatment option for injuries or diseases with increasing importance. Infrapatellar fat pad (IPFP) is a densely vascularized and innervated extra synovial tissue that fills the anterior knee compartment. Adipose-derived stem cells from infrapatellar fat pad (IPFP-ASCs) have multipotency means that they can differentiate into connective tissue cells and have age-independent differentiation capacity as compared to other stem cells. In this study, the osteochondral tissue construct was designed with different inner pattern due to original osteochondral tissue structure and fabrication of it was carried out by 3D printing. For this purpose, alginate (3% w/v) and carboxymethylcellulose (CMC) (9%w /v) were used as bioink. Also, IPFP-ASCs were isolated with enzymatic degradation. Osteogenic and chondrogenic differentiation of IPFP-ASCs were investigated with Alizarin Red and Alcian Blue staining, respectively. IPFP-ASCs-laden osteochondral graft differentiation will be induced by controlled release of growth factor BMP-2 and TGF-β. Before this step, nanocapsules formation with double emission technique with model protein BSA was carried out with different concentration of PCL (5%,10% and 20%). The morphology and structure of the nanocapsules were determined with scanning electron microscopy (SEM). Also, we successfully designed and printed alginate and CMC based scaffold with 20 layers. Chondrogenic and osteogenic differentiation of IPFP-ASCs with suitable culture conditions was obtained. The isolation of IPFP-ASCs, formation of the nanocapsules, and 3D printing of osteochondral graft were carried out successfully


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 37 - 37
1 Jan 2019
Taylor MEC Wilcox RK Mengoni M
Full Access

Osteochondral (OC) grafting is one available method currently used to repair full thickness cartilage lesions with good results clinically when grafting occurs in patients with specific positive prognostic factors. However, there is poor understanding of the effect of individual patient and surgical factors. With limited tissue availability, development of Finite Element (FE) models taking into account these variations is essential. The aim of this study was to evaluate the effect of altering the material properties of OC grafts and their host environment through computer simulation. A generic FE model (ABAQUS CAE 2017) of a push-out test was developed as a press-fit bone cylinder (graft) sliding inside a bone ring (host tissue). Press-fit fixation was simulated using an interference fit. Overlap between host and graft (0.01mm–0.05mm) and coefficient of friction (0.3–0.7) were varied sequentially. Bone Young's moduli (YM) were varied individually between graft and host within the range of otherwise derived tissue moduli (46MPa, 82MPa, 123MPa). Increasing both overlap and frictional coefficient increased peak dislodging force independently (overlap: 490% & frictional coefficient: 176% across range tested). Increasing bone modulus also increased dislodging force, with host bone modulus (107%, 128%, and 140% increase across range, when Graft YM = 123MPa, 82 MPa, and 46MPa, respectively) having a greater influence than graft modulus (28%, 19% and 10% increase across range, when Host YM = 123 MPa, 82MPa and 46MPa, respectively). As anticipated increasing overlap and friction caused an increase in force necessary to dislodge the graft. Importantly, differentially changing the graft and host material properties changed the dislodging force indicating that difference between graft and host may be an important factor in the success or failure clinically of osteochondral grafting


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 51 - 51
1 Mar 2021
Larose G McRae S Beaudoin A McCormack R MacDonald P
Full Access

There is increasing evidence that patients with ACL reconstruction using ipsilateral graft harvest are at greater risk of rupture (12.5%) on their contralateral compared to their surgical side (7.9%). The purpose of this study is to re-evaluate patients from a previous study comparing ipsi- versus contralateral graft harvest to compare ACL rupture rate at a minimum 10 year follow-up. An attempt to contact all participants from a previously published study was made to invite them to return for a follow-up. The assessment included an International Knee Documentation Committee Knee Clinical Assessment (IKDC), isokinetic concentric knee flexion and extension strength testing, as well as the ACL-Quality of life (ACL-QOL). A chart review was conducted to identify or confirm subsequent ipsi- or contralateral knee surgeries. In patients with ipsilateral graft, 3/34 (8.8%) re-ruptured and 3/34 (8.8%) had contralateral rupture. In the contralateral group, 1/28 (3.6%) re-ruptured and 2/28 (7.1%) had contralateral rupture. The relative risk (RR) of re-rupture with ipsilateral graft was 2.47 compared to using the contralateral site (p=0.42). RR of rupture on the contralateral side when ipsilateral graft was used was 1.23 compared to the alternate approach. Current contact information was unavailable for 21 patients. Of the 47 remaining, 37 were consented (79%). No difference in the ACL-QOL between groups (ipsilateral 68.4±24.4, contralateral 80.1±16.0, p=0.17) was observed. There were no differences in knee flexion strength between groups (peak torque flexion affected leg: ipsilateral 77.8nm/kg±27.4, contralateral: 90.0 nm/kg±35.1; p=0.32; Unaffected leg: ipsilateral: 83.3 nm/kg±30.2 contralateral 81.7 nm/kg±24.4; p= 0.89). This study suggests that using the contralateral hamstring in ACL rupture is not associated with an increase in ACL rupture on either side. The risk of ACL injury was low in all limbs; therefore, a larger study would be required to definitively state that graft side had no impact