Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 75 - 75
1 May 2016
Kaneuji A Takahashi E Tsuda R Numata Y Matsumoto T Hirosaki K Takano M
Full Access

Introduction. The French paradox regarding cemented femoral components has not been resolved, so we compared the mechanical behavior of a French stem, the CMK stem (Biomet, Warsaw, IN, USA), with a collarless, polished, tapered stem (CPT, Zimmer, Warsaw, IN, USA) using an original biomechanical instrument. Materials and Methods. Two size-3 CPT stems and two size-302 CMK stems stems were fixed with bone cement into a composite femur soaked in vegetable oil to simulate wet condition. The composite femur was attached to a biomechanical testing instrument after stem implantation, and a 1-Hz dynamic sine wave load (3000 N) was applied to the stems for a total of 1 million cycles. An 8-hour unload period was set after every 16 hours of load. Femur temperature was maintained at 37°C during testing. The femoral canal was prepared for the CPT stems by standard rasping; for the CMK stems, however, the French method was used, in which cancellous bone was removed with a reamer. One CMK stem (CMK-1) was inserted into a femur without collar contact (>2 mm above the calcar), and the other (CMK-2) was inserted into a femur with collar contact. Stem subsidence was measured at the stem shoulder. Compressive force and horizontal cement movement were measured via rods set at the cement–bone interface on the medial, lateral, anterior, and posterior sides of the proximal and distal portions of the composite femurs. Results. Subsidence was as follows: 0.521 mm and 0.629 mm for the CPT stems, 0.46 mm for CMK-1, and 0.36 mm for CMK-2. Compressive force at the cement–bone interface was at the maximum level at the proximomedial portion of all stems. These forces increased gradually until the one-millionth loading. Maximum compressive forces were 183 N and 107 N for the CPT stems, 180 N for CMK-1, and 215 N for CMK-2. There was a strong positive correlation between stem subsidence and compressive force in all stems. Radial cement creep at the proximomedial portion was 90 μ for one of the CPT stems, 184 μ for CMK-1, and −636 μ for CMK-2. Discussion. We previously reported our findings of a positive correlation between stem subsidence and compressive force in CPT stems. In the current study, CMK stems also subsided even when there was stem collar contact with bone. Subsidence was less in CMK stems than in CPT stems, but the values were close. In addition, compressive force and radial cement creep in CMK stems were also similar to or greater than in CPT stems. Conclusion. The two different concept stems demonstrated similar behavior in relation to bone cement, a finding that may present a solution to the French paradox


Bone & Joint Research
Vol. 7, Issue 7 | Pages 485 - 493
1 Jul 2018
Numata Y Kaneuji A Kerboull L Takahashi E Ichiseki T Fukui K Tsujioka J Kawahara N

Objective. Cement thickness of at least 2 mm is generally associated with more favorable results for the femoral component in cemented hip arthroplasty. However, French-designed stems have shown favorable outcomes even with thin cement mantle. The biomechanical behaviors of a French stem, Charnley-Marcel-Kerboull (CMK) and cement were researched in this study. Methods. Six polished CMK stems were implanted into a composite femur, and one million times dynamic loading tests were performed. Stem subsidence and the compressive force at the bone-cement interface were measured. Tantalum ball (ball) migration in the cement was analyzed by micro CT. Results. The cement thickness of 95 % of the proximal and middle region was less than 2.5 mm. A small amount of stem subsidence was observed even with collar contact. The greatest compressive force was observed at the proximal medial region and significant positive correlation was observed between stem subsidence and compressive force. 9 of 11 balls in the medial region moved to the horizontal direction more than that of the perpendicular direction. The amount of ball movement distance in the perpendicular direction was 59 to 83% of the stem subsidence, which was thought to be slip in the cement of the stem. No cement defect and no cement breakage were seen. Conclusion. Thin cement in CMK stems produced effective hoop stress without excessive stem and cement subsidence. Polished CMK stem may work like force-closed fixation in short-term experiment. Cite this article: Y. Numata, A. Kaneuji, L. Kerboull, E. Takahashi, T. Ichiseki, K. Fukui, J. Tsujioka, N. Kawahara. Biomechanical behaviour of a French femoral component with thin cement mantle: The ‘French paradox’ may not be a paradox after all. Bone Joint Res 2018;7:485–493. DOI: 10.1302/2046-3758.77.BJR-2017-0288.R2


Bone & Joint Research
Vol. 6, Issue 5 | Pages 351 - 357
1 May 2017
Takahashi E Kaneuji A Tsuda R Numata Y Ichiseki T Fukui K Kawahara N

Objectives

Favourable results for collarless polished tapered stems have been reported, and cement creep due to taper slip may be a contributing factor. However, the ideal cement thickness around polished stems remains unknown. We investigated the influence of cement thickness on stem subsidence and cement creep.

Methods

We cemented six collarless polished tapered (CPT) stems (two stems each of small, medium and large sizes) into composite femurs that had been reamed with a large CPT rasp to achieve various thicknesses of the cement mantle. Two or three tantalum balls were implanted in the proximal cement in each femur. A cyclic loading test was then performed for each stem. The migration of the balls was measured three-dimensionally, using a micro-computed tomography (CT) scanner, before and after loading. A digital displacement gauge was positioned at the stem shoulder, and stem subsidence was measured continuously by the gauge. Final stem subsidence was measured at the balls at the end of each stem.