Dislocation is a serious complication to be avoided in total hip arthroplasty (THA) and its incidence risk increases in revision surgery. Combined anteversion (CA) of the cup and stem is a concept for appropriate implant positioning; however, the effect of functional changes in
Introduction. Malrotation following total knee replacement is directly related to poor outcome. The knowledge of proximal and distal rotational axes and angles of the femur is therefore of high importance. The aim of the study was to determine whether the most used proximal and distal femoral angles;
Introduction. The posterior condylar axis of the knee is the most common reference for
Introduction: It is commonly believed that markedly increased
Introduction: Patella maltracking is dependent on multifactorial reasons. We have been able to identify one of major and important factor being the rotational alignment of the femoral component. The other subtle variable factors that have a cumulative effect on the tracking of the patella is recognized, which is not the major thrust this study. Methods and Materials: This is a prospective study on a total of 200 TKR. The first subset of 100 done by the same surgeon and same type of prosthesis and the same sequence of all femoral cuts followed by the tibial cut. Thus, the rotation of the femoral component was referenced from the posterior condyles. The second subset of 100 cases, the distal femoral cut was followed by the tibial resection. The susequent femoral resection was referenced from the tibial cut. Thus the rotation of the femoral component was dependent on the tibial axis, and not on the posterior femoral condyles, which in deficient condyles can lead to a significant rotational error. Conclusion: In the first subset the incidence of lateral release were 3% and 10% asymptomatic patellar tilt. In the second subset, where the
Purpose. Incidence of malrotation of femoral fractures after intramedullary nailing is as high as 28%. Prevention of malrotation is superior to late derotation osteotomy. The lesser trochanter (LT) profile has been in use for some time as a radiographic landmark of
Introduction:: Various reference axes are used in total knee arthroplasty to determine the
Introduction & aims. Correct prosthetic alignment is important to the longevity and function of a total hip replacement (THR). With the growth of 3-dimensional imaging for planning and assessment of THR, the importance of restoring, not just leg length and medial offset, but anterior offset has been raised. The change in anterior offset will be influenced by
Total knee arthroplasty in last years has changing the field of applications: from old patients with low demand activities is shifting toward younger patients with higher level of activities demand. Details are promising to more reliable outcomes. Surgeons in conjunction with orthopaedic industries are studying a new instrumentation to better fit the anatomy in M.I.S. surgery and more precise design able to reproduce the correct tensioning of ligaments. In the years, two philosophies were developing to the assess
Introduction. Positioning of a femoral sizing guide has been cited as being a critical intraoperative step during measured-resection based TKA as it determines femoral component rotation. Consequently, modern femoral sizing guides permit surgeons to ‘dial in’ external rotation when placing the guide. Although this feature facilitates guide placement, its effect on posterior femoral condylar resection and flexion gap stability is unknown. This study examines the effect of rotation on posterior femoral condylar resection among different posterior-referencing TKA designs. Methods. Left-sided posterior-referencing femoral sizing guides and cutting blocks from nine posterior-referencing femoral sizing guides belonging to six TKA manufacturers were collected. Each guide underwent high-resolution photography at a setting of zero, three and greater than three degrees of external rotation. The axis of rotation for each guide was then identified and its location from the posterior condylar axis was recorded (figure). Cutting blocks from each system were then photographed and the amount of posterior condylar resection from the medial and lateral condyles was calculated for each setting of external rotation (figure). The posterior resection was then compared to the standard distal resections for each system. Results. Two sizing guides had axes of rotation that were eccentrically located and in proximity to the posterior condylar axis, six were centrally based and one was slightly eccentric. Axis of rotation location had substantial effects on posterior condylar resection. Guides with centrally-based axes tended to resect more medial posterior condyle and less lateral condyle as rotation increased. Guides with eccentric axes tended to resect either less lateral or more medial condyle only. Discussion. This study is the first to investigate
Background. When positioning and rotating the femoral cutting block (AP) on the femur it can either be done according to bony landmarks (measured resection) or by tensioning the flexion gap and positioning it parallel to the tibia (gap balanced technique.) Accurate rotation of the femoral component is essential to ensure a symmetric flexion gap to ensure optimal tibio-femoral kinematics and patello-femoral tracking. Methods. 74 consecutive total knee replacements were assessed intra-operatively for symmetry of the flexion gap by applying a varus and a valgus stress and digitally recording the opening with a computer assisted navigation system. External rotation of the femoral component according to the bony landmarks was measured radiologically. This was compared to the external rotation suggested by the navigation intra-operatively using a gap balanced workflow. Results. The gap balanced technique gave a symmetric flexion gap with less than 3 mm side to side difference in 95% of cases. In 84% of cases (62 of 74) the gap balanced technique was more accurate than the measured resection technique in determining
The achieved anteversion of uncemented stems is to a large extent limited by the internal anatomy of the bone. A better understanding of this has recently become an unmet need because of the increased use of uncemented stems.
We prospectively collected 3D plans generated from preoperative CTs of 30 consecutive THAs (17 left and 13 right hips), in 29 patients with OA, consisting of 16 males and 13 females (median age 68 years, range 46–83 years). A single CT-based planning system and cementless type of implant were used. Post operatively, all patients had a CT scan which was reconstructed using state-of-the-art software solution: the plan and CT reconstruction models were Outcome measures: 1) discrepancy between planned and achieved stem orientation angles Introduction
Materials and Methods
Purpose: Over recent years, several authors have estimated that the distal femur presents an epiphyseal torsion which can be measured intraoperatively or on the preoperative scan. This measurement does not however take into account the dynamic mechanical axis, particularly the mechanical axis at 90° flexion when walking. We used a computer-assisted navigation system (Ortho-pilot®) to attempt to measure
Introduction: Patients with developmental dysplasia of the hip with secondary osteoarthritis are often found to have severe anatomical deformities of the hip. Total hip replacement in such patients is a complex undertaking associated with complication and failure rates. Subtrochanteric derotational osteotomy with customized uncemented total hip arthroplasty has been described to combat the problems of severe
Unknown femur orientation during X-ray imaging may cause inaccurate radiographic measurements. The aim of this study was to assess the effect of 3D femur orientation during radiographic imaging on the measurement of greater trochanter to femoral head centre (GT-FHC) distance. Three-dimensional femoral shapes (n=100) of unknown gender were generated using a statistical shape model based on a training data of 47 CT segmented femora. Rotations in the range of 0° internal to 50° external and 50° of flexion to 0° of extension (at 10 degree increments) were applied to each femur. A ray tracing algorithm was then used to create 2D images representing radiographs of the femora in known 3D orientations. The GT-FHC distance was then measured automatically by identifying the femoral head, shaft axis and tip of greater trochanter. Uniaxial rotations had little impact on the measurement with mean absolute error of 0.6 mm and 3.1 mm for 50° for pure external rotation and 50° pure flexion, respectively. Combined flexion and external rotation yielded more significant errors with 10° around each axis introducing a mean error of 3.6 mm and 20° showing an average error of 8.8 mm (Figure 1.). In the cohort we studied, when the femur was in neutral orientation, the tip of greater trochanter was never below the femoral head centre. Greater trochanter to femoral head centre measurement was insensitive to rotations around a single axis (i.e. flexion or external rotation). Modest combined rotations caused the tip of greater trochanter to appear more distal in 2D and led to deviation from the true value. This study suggests that a radiograph with the greater trochanter appearing below femoral head centre may have been acquired with 3D rotation of the femur.
From a large 3D Caucasian bone data base, female population had significantly larger acetabular anatomical anteversion angle and combined acetabular-femoral anteversion angle than that of male population. There was no significant difference in femoral neck anteversion angles between the groups. Combined Anteversion (CA) angle of acetabular component and femoral neck is an important parameter for a successful Total Hip Arthroplasty (THA). The purpose of this study was to electronically measure the version angles of native acetabulum and femur in matured normal Caucasian population from large 3D CT data base. Our question was if there was any significant difference in CA between male and female population.Summary
Introduction
Patellofemoral complications are among the important reasons for revision knee arthroplasty. Femoral component malposition has been implicated in patellofemoral maltracking, which is associated with anterior knee pain, subluxation, fracture, wear, and aseptic loosening. Rotating-platform mobile bearings compensate for malrotation between the tibial and femoral components. It has been suggested that rotating bearings may also reduce the patellofemoral maltracking resulting from femoral component malposition. We constructed a dynamic musculoskeletal model of weight-bearing knee flexion in a knee implanted with posterior cruciate-retaining arthroplasty components (LifeMOD/KneeSIM, LifeModeler Inc). The model was validated using tibiofemoral and patellofemoral kinematics and forces measured in cadaver knees on an Oxford knee rig. Knee kinematics and patellofemoral forces were measured after simulating axial malrotation of the femoral component (±3° of the transepicondylar reference line). Differences in patellofemoral kinematics and forces between the fixed- and rotating-bearing conditions were analysed. Rotational malalignment of the femoral component affected tibial rotation near full extension and tibial adduction at higher flexion angles. In the fixed-bearing conditions, external rotation of the femoral component increased patellofemoral lateral tilt, patellofemoral lateral shift, and patellofemoral lateral shear forces. Up to 6° of bearing rotation relative to the tibia was noted in the rotating-bearing condition. However, the rotating bearing had minimal effect in reducing the patellofemoral maltracking or shear induced by femoral component rotation. The rotating bearing does not appear to be forgiving of malalignment of the extensor mechanism resulting from femoral component malrotation. The rotating bearing may correct tibiofemoral axial malrotation near full extension but not at higher knee flexion angles. These results support the value of improving existing methodologies for accurate femoral component alignment in knee arthroplasty.
Adult hip dysplasia AHD is a complex 3D pathology of lateral coverage, version and/or volume and is often associated with increased
Introduction. The current methods for measuring femoral torsion have limitations, including variability and inaccuracies. Existing 3D methods are not reliable for abnormal
Aims. The aim of this study was to evaluate the suitability of the tapered cone stem in total hip arthroplasty (THA) in patients with excessive