Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 74 - 74
1 Jul 2014
Brandolini N Kapur N Hall R
Full Access

Summary Statement

Burst fractures were simulated in vitro on human cadaveric spine segments. Displacement of the facet joints and pedicles were measured throughout the fracture process showing how these bony structures behave when an impact load is delivered.

Introduction

Burst fractures account for almost 30% of all spinal injuries, which may result in severe neurological deficit, spinal instability and hence life impairment1. The onset of the fracture is usually traumatic, caused by a high-energy impact loading. Comminution of the endplates and vertebral body, retropulsion of fragments within the canal and increase of the intrapedicular distance are typical indicators of the injury. Experimental and numerical studies have reported strain concentration at the base of the pedicles, suggesting that the posterior processes play a fundamental role in the fracture initiation2,3. However, little is known about the dynamic behaviour of the vertebra undergoing an impact load. The aim of this study was to provide an in vitro cadaveric investigation on burst fracture, focusing on the widening of the facet joints and pedicles during the fracture development.


Orthopaedic Proceedings
Vol. 85-B, Issue SUPP_I | Pages 30 - 30
1 Jan 2003
Taguchi T Kawai S Fuchigami Y Kaneko K Toyota T
Full Access

Percutaneous radiofrequency neurotomy of the lumbar medial branch is a widely accepted treatment for pain of the lumber intervertebral joints. However its success rate has varied among authors. One reason for this inconsistency is the lack of method for objective evaluation of whether the nerve has been sufficiently denervated or not. This study has made possible real time and accurate monitoring of whether electrocauterization is properly executed or not.

The subjects were 50 patients with law back pain persisting for 3 months or longer in whom facet block or medial branch block of posterior ramus was only temporarily effective. They ranged in age from 19 to 76 years (mean 54 years) and were followed up for 1 year to 7 years and 1 month (mean 2 years and 9 months). In our percutaneous radiofrequency neurotomy, the target point of denervation is defined as the groove between the mammillary process and accessory process (1) and complex muscle action potentials (CMAPs) of multifidus muscles are used as an index for objective evaluation of the effects of denervation.

Improvements were observed immediately after the treatment in 39 patients (78%). The effects of this treatment, once attained, remained over a long period, and the duration of effects was 18–20 months as estimated by the cumulative success rate calculated using the Kaplan-Meyer method.

Patients must be carefully selected for percutaneous radiofrequency neurotomy to be consistently effective, all the more because the procedure is simple. However, it is a reliable method for denervation of the lumbar medial branch and long-term relief from pain can be expected. This therapy, therefore, is an effective alternative for the treatment of chronic pain due to lumbar intervertebral arthropathy that resists conservative treatments and disturbs daily living.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_IV | Pages 458 - 459
1 Apr 2004
Kraiwattanapong C Horton W Akamaru T Minamide A Park M
Full Access

Introduction: The anatomy and biomechanics of the thoracic spine is different from the cervical and lumbar spine particularly due to the ribs and sternum which contribute to stability and controlling motion. The role of the sternum and costosternal articulation in the biomechanics of thoracic fracture or deformity correction has not been well studied. The effects of releasing each of these structures, whether alone or in combination, is potentially relevant in the surgical correction of thoracic deformities such as severe kyphosis. The purpose of this study was to investigate the relative effects of releasing the intervertebral disc, the costosternal joint, the sternum, and the facet joints on sagittal thoracic motion and the consequences of altering the sequence of the releases.

Methods: Eighteen human torsos were tested in three experiments (A, B, and C) to determine the effect on sagittal motion due to three different sequences of three surgical releases. In Experiment A the release sequence was back to front: Total facetectomy, then radical discectomy, then sternal osteotomy plus costosternal release. In experiment B the release sequence was front to back: Sternal osteotomy plus costosternal release, then radical discectomy, then total facetectomy. In Experiment C, it was disc first: Radical discectomy, then sternal osteotomy plus costosternal release, then total facetectomy. The different sequences allowed separate analysis of each component and the synergistic patterns. In each of the three experiments, the torso was flexed then extended each time by an applied force (25 N) before and after each release. The extent of both angular flex-ion and angular extension were compared to the intact condition, and after each release.

Results: Radical discectomy provided the greatest increase (P< 0.05) in range of motion (ROM) as compared to the other two single releases, no matter what the sequence. For paired release combination, the radical discectomy and sternal osteotomy plus costosternal release (as in Experiments B and C) provided a significant (P< 0.05) increase in sagittal ROM compared to the combination of radical discectomy and total facetectomy (Experiment A). In Experiment A, if sternal osteotomy and costosternal release (the final release) had not been carried out, then 42% of the sagittal motion would have been lost compared to the 27% related to the total facetectomy (Experiment B). All of the releases allowed more extension than flexion; the only exception was facetectomy when carried out first as in Experiment A.

Conclusions: To increase sagittal thoracic range of motion radical discectomy provided the greatest increase in both extension and total ROM as compared to total facetectomy or sternal osteotomy plus costosternal release, no matter what the sequence. For two releases, the combination of radical discectomy and sternal osteotomy plus costosternal release provided the greatest increase in both extension and total ROM. Total facetectomy was the least useful release. These data have relevance for surgical strategies to correct severe thoracic sagittal plane deformity. The sequence of combined release has important clinical implications.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 45 - 45
1 Nov 2016
Leong A Amis A Jeffers J Cobb J
Full Access

Are there any patho-anatomical features that might predispose to primary knee OA? We investigated the 3D geometry of the load bearing zones of both distal femur and proximal tibias, in varus, straight and valgus knees. We then correlated these findings with the location of wear patches measured intra-operatively. Patients presenting with knee pain were recruited following ethics approval and consent. Hips, knees and ankles were CT-ed. Straight and Rosenburg weight bearing X-Rays were obtained. Excluded were: Ahlbäck grade “>1”, previous fractures, bone surgery, deformities, and any known secondary causes of OA. 72 knees were eligible. 3D models were constructed using Mimics (Materialise Inc, Belgium) and femurs oriented to a standard reference frame. Femoral condyle Extension Facets (EF) were outlined with the aid of gaussian curvature analysis, then best-fit spheres attached to the Extension, as well as Flexion Facets(FF). Resected tibial plateaus from surgery were collected and photographed, and Matlab combined the average tibia plateau wear pattern. Of the 72 knees (N=72), the mean age was 58, SD=11. 38 were male and 34 female. The average hip-knee-ankle (HKA) angle was 1° varus (SD=4°). Knees were assigned into three groups: valgus, straight or varus based on HKA angle. Root Mean Square (RMS) errors of the medial and lateral extension spheres were 0.4mm and 0.2mm respectively. EF sphere radii measurements were validated with Bland-Altman Plots showing good intra- and interobserver reliability (+/− 1.96 SD). The radii (mm) of the extension spheres were standardised to the medial FF sphere. Radii for the standardised medial EF sphere were as follows; Valgus (M=44.74mm, SD=7.89, n=11), Straight (M=44.63mm, SD=7.23, n=38), Varus (M=50.46mm, SD=8.14, n=23). Ratios of the Medial: Lateral EF Spheres were calculated for the three groups: Valgus (M=1.35, SD=.25, n=11), Straight (M=1.38, SD=.23, n=38), Varus (M=1.6, SD=.38, n=23). Data was analysed with a MANOVA, ANOVA and Fisher's pairwise LSD in SPSS ver 22, reducing the chance of type 1 error. The varus knees extension facets were significantly flatter with a larger radius than the straight or valgus group (p=0.004 and p=0.033) respectively. In the axial view, the medial extension facet centers appear to overlie the tibial wear patch exactly, commonly in the antero-medial aspect of the medial tibial plateau. For the first time, we have characterised the extension facets of the femoral condyles reliably. Varus knees have a flatter medial EF even before the onset of bony attrition. A flatter EF might lead to menisci extrusion in full extension, and early menisci failure. In addition, the spherical centre of the EF exactly overlies the wear patch on the antero-medial portion of the tibia plateau, suggesting that a flatter medial extension facet may be causally related to the generation of early primary OA in varus knees