Advertisement for orthosearch.org.uk
Results 1 - 8 of 8
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 19 - 19
1 Dec 2016
Ayeni O de SA D Stephens K Kuang M Simunovic N Karlsson J
Full Access

Health care facilities are major contributors of waste to landfills, with operating rooms estimated to assume 20–70% of this waste. With hip arthroscopy for femoroacetabular impingement (FAI) on the rise, it is important to understand its environmental impact and identify areas for greening practices. Given its minimally-invasive nature, we hypothesise overall arthroscopic waste per FAI patient case to be approximately 5 kg, with minimal biohazard waste. The purpose of this study was to determine the amount of waste produced in FAI procedures and understand the environmental impact of the procedure to aid us in developing greening practices. A single surgeon waste audit (with descriptive statistics) of five FAI hip arthroscopy procedures – categorised by: 1) normal/landfill waste; 2) recyclable cardboards and plastics; 3) biohazard waste; 4) sharp items; 5) linens; and 6) sterile wrapping – was performed in April 2015. The surgical waste (except laundered linens) from the five FAI surgeries totalled 47.4 kg, of which 21.7 kg (45.7%) was biohazard waste, 11.7 kg (24.6%) was sterile wrap, 6.4 kg (13.5%) was normal/landfill waste, 6.4 kg (13.5%) was recyclable plastics, and 1.2 kg (2.6%) was sharp items. There was an average of 9.4 kg (excluding laundered linens) of waste produced per procedure. Considerable waste, specifically biohazard waste, is produced in FAI procedures with an average of 9.4 kg of waste produced per procedure, including 4.3 kg of biohazard waste. In Canada (population 35.7 million), approximately 18 800 kg of waste (8600 kg of biohazard waste) is produced from an estimated 2000 FAI procedures performed every year. Additional recycling programs, reducing surgical overage, and continued adherence to proper waste segregation will be helpful in reducing waste production and its environmental burden. An emphasis on “green outcomes” is also required to demonstrate environmental responsibility and effectively manage and allocate finite resources


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_11 | Pages 5 - 5
7 Jun 2023
Prakash R Abid H Wasim A Sharma A Agrawal Y
Full Access

The National Health Service produces over 500,000 tonnes of waste and 25 mega tonnes of CO2 annually. Operating room waste is segregated into different streams which are recycled, disposed of in landfill sites, or undergo costly and energy-intensive incineration processes.

By assessing the quantity and recyclability of waste from primary hip and knee arthroplasty cases, we aim to identify strategies to reduce the carbon footprint of arthroplasty surgery.

Data was collected prospectively at a tertiary orthopaedic hospital, in the theatres of six arthroplasty surgeons between April – July 2022. Fifteen primary total hip arthroplasty (THA) and 16 primary total knee arthroplasty (TKA) cases were included; revision and complex primary cases were excluded.

Waste was categorised into non-hazardous waste, hazardous waste, recycling, sharps, and linens. Each waste category was weighed. Items disposed as non-hazardous waste were catalogued for a sample of 10 TKA and 10 THA cases. Recyclability of items was determined from packaging.

Average total waste generated for THA and TKA were 14.46kg and 17.16kg respectively, with TKA generating significantly greater waste (p < 0.05).

On average only 5.4% of waste was recycled in TKA and just 2.9% in THA cases. The mean recycled waste was significantly greater in TKA cases compared to THA, 0.93kg and 0.42kg respectively (p < 0.05).

Hazardous waste represented the largest proportion of the waste streams for both TKA (69.2%) and THA (73.4%). On average TKA generated a significantly greater amount (11.87kg) compared to THA (10.61kg), p < 0.05.

Non-hazardous waste made up 15.1% and 11.3% of total waste for TKA and THA respectively.

In the non-hazardous waste, only two items (scrub brush packaging and sterile towel packaging) were identified as recyclable based on packaging.

We estimate that annually total hip and knee arthroplasty generates over 2.7 million kg of waste in the UK. Through increased use of recyclable plastics for packaging, combined with clear labelling of items as recyclable, medical suppliers can significantly reduce the carbon footprint of arthroplasty. Our data highlight only a very small percentage of waste is recycled in total hip and knee arthroplasty cases.


Bone & Joint Open
Vol. 3, Issue 8 | Pages 628 - 640
1 Aug 2022
Phoon KM Afzal I Sochart DH Asopa V Gikas P Kader D

Aims. In the UK, the NHS generates an estimated 25 megatonnes of carbon dioxide equivalents (4% to 5% of the nation’s total carbon emissions) and produces over 500,000 tonnes of waste annually. There is limited evidence demonstrating the principles of sustainability and its benefits within orthopaedic surgery. The primary aim of this study was to analyze the environmental impact of orthopaedic surgery and the environmentally sustainable initiatives undertaken to address this. The secondary aim of this study was to describe the barriers to making sustainable changes within orthopaedic surgery. Methods. A literature search was performed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines through EMBASE, Medline, and PubMed libraries using two domains of terms: “orthopaedic surgery” and “environmental sustainability”. Results. A total of 13 studies were included in the final analysis. All papers studied the environmental impact of orthopaedic surgery in one of three areas: waste management, resource consumption, and carbon emissions. Waste segregation was a prevalent issue and described by nine studies, with up to 74.4% of hazardous waste being generated. Of this, six studies reported recycling waste and up to 43.9% of waste per procedure was recyclable. Large joint arthroplasties generated the highest amount of recyclable waste per procedure. Three studies investigated carbon emissions from intraoperative consumables, sterilization methods, and through the use of telemedicine. One study investigated water wastage and demonstrated that simple changes to practice can reduce water consumption by up to 63%. The two most common barriers to implementing environmentally sustainable changes identified across the studies was a lack of appropriate infrastructure and lack of education and training. Conclusion. Environmental sustainability in orthopaedic surgery is a growing area with a wide potential for meaningful change. Further research to cumulatively study the carbon footprint of orthopaedic surgery and the wider impact of environmentally sustainable changes is necessary. Cite this article: Bone Jt Open 2022;3(8):628–640


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_8 | Pages 17 - 17
10 May 2024
Morris H Shah S Murray R
Full Access

Introduction. The health sector contributes the equivalent of 4.4% of global net emissions to the climate carbon footprint. It has been suggested that between 20% and 70% of health care waste originates from a hospital's operating room, the second greatest component of this are the textiles used, and up to 90% of waste is sent for costly and unneeded hazardous waste processing. Waste from common orthopaedic operations was quantified, the carbon footprint calculated, and cost of disposal assessed. A discussion of the circular economy of textiles, from the author of the textile guidance to the Green Surgery Report follows. Methods. The amount of waste generated from a variety of trauma and elective orthopaedic operations was calculated across a range of hospital sites. The waste was separated primarily into clean and contaminated, paper or plastic. The carbon footprint and the cost of disposal across the hospital sites was subsequently calculated. Results. Elective procedures can generate up to 16.5kg of plastic waste per procedure. Practices such as double draping the patient contribute to increasing the quantity of waste. The cost to process waste vary widely between hospital sites, waste disposal contractors and the method of waste disposal. Conclusion. This study sheds new light on the environmental impact of waste produced in trauma and elective orthopaedic procedures. Mitigating the environmental impact of the operating room requires a collective drive for a culture change to sustainability and social responsibility. Each clinician can impact upon the carbon footprint of their operating theatre. Consideration should be given to the type of textiles used within the operating theatre


Bone & Joint Open
Vol. 5, Issue 9 | Pages 742 - 748
10 Sep 2024
Kodumuri P Joshi P Malek I

Aims. This study aimed to assess the carbon footprint associated with total hip arthroplasty (THA) in a UK hospital setting, considering various components within the operating theatre. The primary objective was to identify actionable areas for reducing carbon emissions and promoting sustainable orthopaedic practices. Methods. Using a life-cycle assessment approach, we conducted a prospective study on ten cemented and ten hybrid THA cases, evaluating carbon emissions from anaesthetic room to recovery. Scope 1 and scope 2 emissions were considered, focusing on direct emissions and energy consumption. Data included detailed assessments of consumables, waste generation, and energy use during surgeries. Results. The carbon footprint of an uncemented THA was estimated at 100.02 kg CO2e, with a marginal increase to 104.89 kg CO2e for hybrid THA. Key contributors were consumables in the operating theatre (21%), waste generation (22%), and scope 2 emissions (38%). The study identified opportunities for reducing emissions, including instrument rationalization, transitioning to LED lighting, and improving waste-recycling practices. Conclusion. This study sheds light on the substantial carbon footprint associated with THA. Actionable strategies for reducing emissions were identified, emphasizing the need for sustainable practices in orthopaedic surgery. The findings prompt a critical discussion on the environmental impact of single-use versus reusable items in the operating theatre, challenging traditional norms to make more environmentally responsible choices. Cite this article: Bone Jt Open 2024;5(9):742–748


Abstract. Introduction. Transforming outpatient services is a key commitment set out in the NHS Long Term Plan, with particular emphasis on digital solutions to reduce outpatient follow-up (FU) by 25%. This study looks at the potential for removing knee arthroscopy FU by providing a bespoke multimedia report for each individual patient, generated using the Synergy™ Surgeon App (Arthrex). Methodology. Single District Hospital using a 3 Phase study. Phase 1 – Assessment of cost and environmental impact of outpatient follow up appointments. Phase 2 – Bench marking of existing pathways and patient experience. Phase 3 – Qualitative assessment of multimedia report feedback of 30 patients. Results. Phase 1 – Impact per year for Trust in released clinician time 135hrs. Cost avoidance £40-£60k. Reduction of the carbon footprint from reduced FU of 3132 KgCo2e2. Phase 2 – Deep dive on 2019 n. 353 procedures. 1206 outpatient appointments required. Average 1.2 post-operative appointments. Phase 3 – 87% of patients who received the e-op report needed no further FU. This compares to only 25% using a traditional post op discussion after surgery. 94% of patients felt the report aided their recovery. Conclusions. Reducing patient FU appointments is crucial to the future of the NHS. Achieving this whilst simultaneously improving the quality of patient communication is achievable as this study has demonstrated. The potential scalability of this project to be applied other arthroscopic procedures is enormous. The study has demonstrated patients are comfortable with modern technology and feel it enhances their understanding whilst decreasing the need for routine post-op FU


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_7 | Pages 74 - 74
1 Jul 2022
Phoon KM Afzal I Sochart D Gikas P Asopa V Kader D
Full Access

Abstract. Introduction. The NHS generates 4–5% of the nation's total carbon emissions and over 500,000 tonnes of waste annually. Up to one-third of waste from orthopaedic procedures are recyclable, with large joint arthroplasties producing more than other subspecialties. However, there is limited evidence demonstrating the principles of sustainability and its benefits within orthopaedic surgery. This study aimed to analyse the environmental impact and sustainable initiatives undertaken within orthopaedic surgery. Methodology. A systematic review was performed according to PRISMA guidelines. The systematic search was conducted through EMBASE, Medline, and PubMed libraries. Results. Four studies analysed waste management in primary total knee replacements (TKRs) during the perioperative period. The most prevalent environmental issue was waste management. A total of 33 TKRs were observed across the studies. The mean waste generated per TKR was 13.1kg (range 11.6-15.1kg), with up to 69.9% being hazardous waste. The number of waste streams reported ranged from two to six. This study has further demonstrated that TKRs generated the highest amount of waste per procedure compared to other orthopaedic subspecialties. Three studies reported recycling waste, with up to 43% of total waste from TKRs being potentially recyclable material. Conclusion. Primary TKRs one of the largest contributors of waste generated by orthopaedic procedures during the perioperative period. Environmental sustainability in orthopaedic surgery is a growing area of interest with a wide potential for meaningful change. Further research is needed to study the cumulative carbon footprint of primary TKRs and long-term benefits of environmentally sustainable changes


The Bone & Joint Journal
Vol. 105-B, Issue 8 | Pages 935 - 942
1 Aug 2023
Bradley CS Verma Y Maddock CL Wedge JH Gargan MF Kelley SP

Aims

Brace treatment is the cornerstone of managing developmental dysplasia of the hip (DDH), yet there is a lack of evidence-based treatment protocols, which results in wide variations in practice. To resolve this, we have developed a comprehensive nonoperative treatment protocol conforming to published consensus principles, with well-defined a priori criteria for inclusion and successful treatment.

Methods

This was a single-centre, prospective, longitudinal cohort study of a consecutive series of infants with ultrasound-confirmed DDH who underwent a comprehensive nonoperative brace management protocol in a unified multidisciplinary clinic between January 2012 and December 2016 with five-year follow-up radiographs. The radiological outcomes were acetabular index-lateral edge (AI-L), acetabular index-sourcil (AI-S), centre-edge angle (CEA), acetabular depth ratio (ADR), International Hip Dysplasia Institute (IHDI) grade, and evidence of avascular necrosis (AVN). At five years, each hip was classified as normal (< 1 SD), borderline dysplastic (1 to 2 SDs), or dysplastic (> 2 SDs) based on validated radiological norm-referenced values.