We have done emergency vascularized
Infected non-union after severe open fracture or unsuitable fracture operation is frequently associated with bone defect and its treatment has been controversial. We have used microsurgical vascularised
Introduction: Screws placed in the fibula do not have a satisfactory purchase during internal fixation of an osteoporotic ankle fracture. Tibia-pro-fibula screws that extend from the fibula into the distal tibial metaphysis provide additional purchase. The purpose of this study is to investigate if purchase of these screws can be enhanced further by injecting calcium sulfate and calcium phosphate
Introduction: Bone marrow derived stromal stem cells (BMSSC’s) have the ability to differentiate into a variety of mesenchymal tissues including bone. The objective of this study was to evaluate the use a hydroxyapatite – BMSSC (HA-BMSSC)
Purpose: The current gold standard for spinal arthrodesis, autologous bone graft harvested from the iliac crest, has several disadvantages including donor site morbidity, blood loss, delayed wound healing, and increased operative time. Our study explores a Demineralized Bone Matrix-Calcium Sulfate(DBM-CaSO4)
Purpose: Bone grafting of subchondral voids during ORIF of tibial plateau fractures is commonly performed. The efficacy of various graft materials to resist post-operative articular displacement and stimulate bone regeneration in the grafted zone, remains largely unstudied. Studies in animals with a new composite material have shown that this composite material leads to greater bone formation and stronger bone versus autograft at 13 and 26 weeks. This study was designed to determine whether this material helps resist articular fragment displacement and leads to stronger bone regeneration and better functional outcome in the treatment of tibial plateau fractures. Methods: Thirty four patients with unilateral tibial plateau fractures (OTA 41A-B), were enrolled in a prospective multicenter single cohort study. The treatment protocol included ORIF and defect augmentation with a composite bone graft substitute (PRODENSE®, Wright Medical Technology). Reduction and bone formation was evaluated and followed with both plain radiographs and CT scans obtained immediately postop and at 12 and 24 weeks. Functional outcome was assessed using the SMFA scores. CT analysis was performed by an independent musculoskeletal radiologist who quantified maintenance of reduction of the articular surface and bone density within the grafted area. Results: Eighteen of the 34 enrolled patients were eligible for follow-up at 24 weeks (sixteen were not yet eligible for the 24 week time point). Mean change in articular reduction was 0.75mm, Density measures in the region of the initial subchondral void decreased from a mean of 1400 Hounsfield units at baseline (immediately post-op) to 600 at 24 weeks, suggesting bone regeneration and normal remodeling. Short form Musculoskeletal Function Assessment activity scores improved from 55.15 (SD=42.8) at baseline to 20.92 (SD=18.09) at 24 weeks. Complications include 1 DVT, 3 infections and 1 cellulitis, all of which resolved. There was an additional infection that required revision of the ORIF. Conclusions and Significance: Serial CT evaluations revealed maintenance of post-operative reduction with displacement of less than 1mm. Bone density, in the region of the grafted area was near normal and confirms that the
Impaction bone grafting with milled human allograft is the gold standard for replacing lost bone stock during revision hip surgery. Problems surrounding the use of allograft include cost, availability, disease transmission and stem subsidence (usually due to shear failure of the surrounding allograft). The aim of this study was to investigate various polymers for use as substitute allograft. The ideal graft would be a composite with similar mechanical characteristics as allograft, and with the ability to form High and low molecular weight (MW) forms of three different polymers (polylactic acid (PLA), poly (lactic co-glycolic) acid (PLGA) and polycaprolactone (PCL)) were milled, impacted into discs, and then tested in a custom built shear testing rig, and compared to allograft. A second stage of the experiment involved the addition of skeletal stem cells (SSC) to each of the milled polymers, impaction, 8 days incubation, and then tests for cell viability and number, via fluorostaining and biochemical (WST-1) assays.Aims
Methods
Impaction bone grafting with milled human allograft is the gold standard for replacing lost bone stock during revision hip surgery. Problems surrounding the use of allograft include cost, availability, disease transmission and stem subsidence (usually due to shear failure of the surrounding allograft). The aim of this study was to investigate various polymers for use as substitute allograft. The ideal graft would be a composite with similar mechanical characteristics as allograft, and with the ability to form de novo bone. High and low molecular weight (MW) forms of three different polymers (polylactic acid (PLA), poly (lactic co-glycolic) acid (PLGA) and polycaprolactone (PCL)) were milled, impacted into discs, and then tested in a custom built shear testing rig, and compared to allograft. A second stage of the experiment involved the addition of skeletal stem cells (SSC) to each of the milled polymers, impaction, 8 days incubation, and then tests for cell viability and number, via fluorostaining and biochemical (WST-1) assays. The shear strengths of both high/ low MW PLA, and high/low MW PLGA were significantly higher than those of milled allograft (P<0.001, P<0.001, P<0.005 and P<0.005) but high and low MW PCL was poor to impact, and had significantly lower shear strengths (P<0.005, P<0.001). Fluorostaining showed good cell survival on high MW PLA, high MW PCL and high MW PLGA. These findings were confirmed with WST-1 assays. High MW PLA as well as high MW PLGA performed well both in mechanical testing and cell compatibility studies. These two polymers are good contenders to produce a living composite for use as substitute human allograft in impaction bone grafting, and are currently being optimised for this use via the investigation of different production techniques and in-vivo studies.
Purpose: To test a CaSO4/CaPO4-TCP composite bone graft substitute in a crtically sized bone defect. Method: Twenty dogs had a contained medullary defect created in the proximal humerus. In ten dogs, the defect was treated with CaSO4/CaPO4-TCP
Arthrodesis of the spine is the preferred surgical treatment for a number of pathological disorders. This process is dependent on three primary components: osteogenic cells with osteoblastic potential, osteoinductive growth factors and an osteoconductive scaffold that facilitates bone formation and vascular ingrowth. Several systemic and local factors are known to affect the rate of spinal fusion. Autogenous bone graft remains the gold standard graft material for spinal fusion. It is the only graft material that supplies the three primary components necessary for a solid fusion. Unfortunately autogenous bone is only available in limited quantities and the procurement of autograft is associated with significant donor site morbidity. A number of different bone graft materials have been developed as alternatives to autograft. These materials may be classified into two major groups, bone graft extenders used to augment autograft, or bone graft substitutes. Several different bone graft materials have been developed including allograft, osteoconductive matrices, demineralised bone matrices, bone marrow aspiration, autologous platelet concentration, growth factors and gene therapy. Allograft is currently the most widely used substitute for autogenous bone. Because any osteogenic cells are eradicated during the tissue processes, allograft is primary osteoinductive with minimal osteoinductive potential. Processing may affects the structural and biological characteristics of a graft. The incorporation of allograft occurs by a process similar to that observed with autograft but more slowly and is less complete. Osteoconductive scaffolds do not contain any osteogenic cells or osteoinductive factors and are used as a
Chronic medial collateral ligament (MCL) instability is an unusual clinical problem. Due to the unsatisfactory results of advancement procedures or reconstruction using autologous techniques we have devised a new technique using a non-irradiated tendo achilles allograft construct. Three patients are presented who had symptomatic MCL insufficiency. The laxity was demonstrated clinically (all grade 3) and radiologically using valgus stress views. The tendo achilles was fashioned into a triangular
Among the wide variety of bone substitutes presently available, pure β-tricalcium phosphate ceramics have become available (Biosorb®; Aesculap, Tuttlingen). During the first 12 months of a prospective clinical trial, Biosorb® products were implanted in 21 patients. The ceramics were used in a variety of clinical settings, ranging from pelvic osteotomies in children (n=9), to filling of bone cysts or osseous defects (n=4), to dorsal spondylodesis (n=6), as well as for the grafting of pseudarthroses (n=2). Average follow-up period was 13 (6–18) months. The β-TCP granules, when used as part of a
Prior to the 1970s, almost all bone sarcomas were treated by amputation. The first distal femoral resection and reconstruction was performed in 1973 by Dr Kenneth C Francis at the Memorial Sloan-Kettering Cancer Centre in New York. Since that time, limb-sparing surgery for primary sarcoma has become the mainstay of sarcoma surgery throughout the world. Initially, the use of mega-prostheses of increasing complexity, involving all the major long bones and both pelvic and shoulder girdles, was popularised. In the early 1980s, wide use of massive allograft reconstructions became widespread in both Europe and in multiple centres in the USA and UK. Since that time, increasing complexity in the design of prostheses has allowed for increasing functional reconstructions to occur, but the use of allograft has become less popular due to the development of late graft failures of patients survive past ten years. Fracture rates approaching 50% at 10 years are reported, and thus, other forms of reconstruction are being sought. Techniques of leg lengthening, and bone docking procedures to replace segmental bone loss to tumour are now employed, but the use of biological vascularised reconstructions are becoming more common as patient survivorship increases with children surviving their disease. The use of vascularised fibular graft,
Introduction: Bone is unique with a vast potential for regeneration from cells with stem cell characteristics. With an increasing aging population, clinical imperatives to augment and facilitate tissue repair have highlighted the therapeutic potential of harnessing mes-enchymal populations from bone. We describe laboratory and clinical findings from two clinical cases, where different proximal femoral conditions (AVN, bone cyst) were treated with impacted allograft augmented with marrow-derived allogeneic progenitor cells. Methods: Marrow was aspirated from the posterior superior iliac crest and seeded onto prepared washed morsellised allograft. The seeded graft was left for 40 minutes to allow adherence of the marrow-derived osteoprogenitor cells prior to impaction into the defect. Samples of the impacted graft were taken for in-vitro analysis of cell viability, histology and biochemical analysis of cell number and osteogenic enzyme activity. The total force imparted during impaction was calculated using a load cell, with three independent surgeons performing a laboratory simulation of the impaction technique. Results: Both patients made a rapid clinical recovery after an overnight stay. Imaging confirmed filling of the defects with increased density on plain radiographs suggesting good impaction of the graft composite. Immu-nohistochemical staining of graft samples demonstrated that a living
Purpose: The management of Dorsal Fracture Dislocations of the PIP joint is challenging, especially for the unstable ones. Complications are common and often lead to functional disability. Many treatment methods have been described in the past, illustrating that no optimal solution has been found. In the Hemi-Hamate autograft technique, introduced by Hastings in 1999, a reconstruction of the volar lip joint surface and stabilization of the joint is achieved. This autograft can be seen as a model of a non vascularised bone-cartilage
For decades the treatment of chronic post-traumatic osteomyelitis associated with bone exposure has been one of the most serious problems in the field of orthopaedic surgery. “Sterilisation” of the osteomyelitic site, that is radical débridement of all infected tissue, is the basic requirement of the treatment; in the past, the remaining defect of the débrided area was closed with skin grafts, which were removed in a further stage when the infection had cleared; then the defect was filled with muscle flap and bone graft of various types. Both soft tissue and osseous reconstruction took a relatively long period of time, requiring several-stage treatment. Over the years, introduction of microsurgery led to free muscle flaps and skin graft in one reconstruction setting in the 1970s and thin fascio-cutaneous flap reconstruction in the 1980s, allowing a shorter period of hospitalisation and an improvement in patients’ lifestyle. We performed a retrospective study of 22 patients treated for chronic osteomyelitis (middle or distal 1/3 of the leg, n=10; tarsus, n=6; forearm, n=6) by means of free vascularised bone graft or
Purpose: Management of extensive tibial loss raises the question of indications for vascularised grafts. These techniques depend on the number of functional vascular trunks available. We developed a modified technique which allows using this type of graft without sacrificing the tibial pedicle, making it usable when only one trunk remains functional. We use the fibular arterial supply to bridge the remaining axis. The purpose of this work was to detail the modalities of this technique and provide early results. Material and method: Since 2000, we have reserved this technique for infected nonunion with loss of tibial tissue extending over 5 cm in patients who decline amputation. Four patients (four men, mean age 30 years) underwent the procedure. The initial trauma resulted from a motorcycle (n=3) or firearm (n=1) accident. The patients were referred to our unit within three months on the average. Prior treatments (cancellous graft in an open or intrafocal procedure) had failed in all patients who presented persistent infection. Antibiotics were administered until bone healing in all patients. Mean length of the gap was 10 cm (7 – 15 cm). The
Bone morphogenetic proteins are low molecular weight proteins which have extensive similarity in structure and function to the transforming growth factor beta factors. They bind receptors on the surface of osteoprogenitor stem cells and activate intracellular signal transduction cascades resulting in the osteoblastic differentiation of pluripotential stem cells. Bone morphogenetic proteins (BMP) are being increasingly used in orthopaedic surgery including spinal fusion. These small molecules are capable of inducing bone formation when delivered in the appropriate concentration and on the appropriate scaffold. Recombinant BMP usually is combined with an osteoconductive carrier to form a
Core decompression is a common treatment for early stage osteonecrosis of the femoral head due to the simplicity of the procedure and the positive results of this intervention. A number of different core decompression methods exist: including methods backfilled by a bone graft material and those without filling. Due to the inherent desire that the core decompression defect regenerate healthy bone, reduce pain, and stave off the need for total hip arthroplasty for some period of time, this surgically created defect is an excellent application for the use of a bone graft substitute. Recently, an injectable calcium sulfate (CaSO. 4. )/calcium phosphate (CaPO. 4. )
The October 2014 Oncology Roundup360 looks at: how best to reconstruct humeral tumours; not everything is better via the arthroscope; obesity and sarcoma; frozen autograft;