Advertisement for orthosearch.org.uk
Results 1 - 20 of 891
Results per page:
Bone & Joint Research
Vol. 12, Issue 7 | Pages 433 - 446
7 Jul 2023
Guo L Guo H Zhang Y Chen Z Sun J Wu G Wang Y Zhang Y Wei X Li P

Aims. To explore the novel molecular mechanisms of histone deacetylase 4 (HDAC4) in chondrocytes via RNA sequencing (RNA-seq) analysis. Methods. Empty adenovirus (EP) and a HDAC4 overexpression adenovirus were transfected into cultured human chondrocytes. The cell survival rate was examined by real-time cell analysis (RTCA) and EdU and flow cytometry assays. Cell biofunction was detected by Western blotting. The expression profiles of messenger RNAs (mRNAs) in the EP and HDAC4 transfection groups were assessed using whole-transcriptome sequencing (RNA-seq). Volcano plot, Gene Ontology, and pathway analyses were performed to identify differentially expressed genes (DEGs). For verification of the results, the A289E/S246/467/632 A sites of HDAC4 were mutated to enhance the function of HDAC4 by increasing HDAC4 expression in the nucleus. RNA-seq was performed to identify the molecular mechanism of HDAC4 in chondrocytes. Finally, the top ten DEGs associated with ribosomes were verified by quantitative polymerase chain reaction (QPCR) in chondrocytes, and the top gene was verified both in vitro and in vivo. Results. HDAC4 markedly improved the survival rate and biofunction of chondrocytes. RNA-seq analysis of the EP and HDAC4 groups showed that HDAC4 induced 2,668 significant gene expression changes in chondrocytes (1,483 genes upregulated and 1,185 genes downregulated, p < 0.05), and ribosomes exhibited especially large increases. The results were confirmed by RNA-seq of the EP versus mutated HDAC4 groups and the validations in vitro and in vivo. Conclusion. The enhanced ribosome pathway plays a key role in the mechanism by which HDAC4 improves the survival rate and biofunction of chondrocytes. Cite this article: Bone Joint Res 2023;12(7):433–446


Bone & Joint Research
Vol. 11, Issue 7 | Pages 453 - 464
20 Jul 2022
Wang H Shi Y He F Ye T Yu S Miao H Liu Q Zhang M

Aims. Abnormal lipid metabolism is involved in the development of osteoarthritis (OA). Growth differentiation factor 11 (GDF11) is crucial in inhibiting the differentiation of bone marrow mesenchymal stem cells into adipocytes. However, whether GDF11 participates in the abnormal adipogenesis of chondrocytes in OA cartilage is still unclear. Methods. Six-week-old female mice were subjected to unilateral anterior crossbite (UAC) to induce OA in the temporomandibular joint (TMJ). Histochemical staining, immunohistochemical staining (IHC), and quantitative real-time polymerase chain reaction (qRT-PCR) were performed. Primary condylar chondrocytes of rats were stimulated with fluid flow shear stress (FFSS) and collected for oil red staining, immunofluorescence staining, qRT-PCR, and immunoprecipitation analysis. Results. Abnormal adipogenesis, characterized by increased expression of CCAAT/enhancer-binding protein α (CEBPα), fatty acid binding protein 4 (FABP4), Perilipin1, Adiponectin (AdipoQ), and peroxisome proliferator-activated receptor γ (PPARγ), was enhanced in the degenerative cartilage of TMJ OA in UAC mice, accompanied by decreased expression of GDF11. After FFSS stimulation, there were fat droplets in the cytoplasm of cultured cells with increased expression of PPARγ, CEBPα, FABP4, Perilipin1, and AdipoQ and decreased expression of GDF11. Exogenous GDF11 inhibited increased lipid droplets and expression of AdipoQ, CEBPα, and FABP4 induced by FFSS stimulation. GDF11 did not affect the change in PPARγ expression under FFSS, but promoted its post-translational modification by small ubiquitin-related modifier (SUMOylation). Local injection of GDF11 alleviated TMJ OA-related cartilage degeneration and abnormal adipogenesis in UAC mice. Conclusion. Abnormal adipogenesis of chondrocytes and decreased GDF11 expression were observed in degenerative cartilage of TMJ OA. GDF11 supplementation effectively inhibits the adipogenesis of chondrocytes and thus alleviates TMJ condylar cartilage degeneration. GDF11 may inhibit the abnormal adipogenesis of chondrocytes by affecting the SUMOylation of PPARγ. Cite this article: Bone Joint Res 2022;11(7):453–464


Bone & Joint Research
Vol. 12, Issue 2 | Pages 121 - 132
1 Feb 2023
Mo H Wang Z He Z Wan J Lu R Wang C Chen A Cheng P

Aims. Pellino1 (Peli1) has been reported to regulate various inflammatory diseases. This study aims to explore the role of Peli1 in the occurrence and development of osteoarthritis (OA), so as to find new targets for the treatment of OA. Methods. After inhibiting Peli1 expression in chondrocytes with small interfering RNA (siRNA), interleukin (IL)-1β was used to simulate inflammation, and OA-related indicators such as synthesis, decomposition, inflammation, and apoptosis were detected. Toll-like receptor (TLR) and nuclear factor-kappa B (NF-κB) signalling pathway were detected. After inhibiting the expression of Peli1 in macrophages Raw 264.7 with siRNA and intervening with lipopolysaccharide (LPS), the polarization index of macrophages was detected, and the supernatant of macrophage medium was extracted as conditioned medium to act on chondrocytes and detect the apoptosis index. The OA model of mice was established by destabilized medial meniscus (DMM) surgery, and adenovirus was injected into the knee cavity to reduce the expression of Peli1. The degree of cartilage destruction and synovitis were evaluated by haematoxylin and eosin (H&E) staining, Safranin O/Fast Green staining, and immunohistochemistry. Results. In chondrocytes, knockdown of Peli1 produced anti-inflammatory and anti-apoptotic effects by targeting the TLR and NF-κB signalling pathways. We found that in macrophages, knockdown of Peli1 can inhibit M1-type polarization of macrophages. In addition, the corresponding conditioned culture medium of macrophages applied to chondrocytes can also produce an anti-apoptotic effect. During in vivo experiments, the results have also shown that knockdown Peli1 reduces cartilage destruction and synovial inflammation. Conclusion. Knockdown of Peli1 has a therapeutic effect on OA, which therefore makes it a potential therapeutic target for OA. Cite this article: Bone Joint Res 2023;12(2):121–132


Bone & Joint Research
Vol. 13, Issue 3 | Pages 110 - 123
7 Mar 2024
Xu J Ruan Z Guo Z Hou L Wang G Zheng Z Zhang X Liu H Sun K Guo F

Aims. Osteoarthritis (OA) is the most common chronic pathema of human joints. The pathogenesis is complex, involving physiological and mechanical factors. In previous studies, we found that ferroptosis is intimately related to OA, while the role of Sat1 in chondrocyte ferroptosis and OA, as well as the underlying mechanism, remains unclear. Methods. In this study, interleukin-1β (IL-1β) was used to simulate inflammation and Erastin was used to simulate ferroptosis in vitro. We used small interfering RNA (siRNA) to knock down the spermidine/spermine N1-acetyltransferase 1 (Sat1) and arachidonate 15-lipoxygenase (Alox15), and examined damage-associated events including inflammation, ferroptosis, and oxidative stress of chondrocytes. In addition, a destabilization of the medial meniscus (DMM) mouse model of OA induced by surgery was established to investigate the role of Sat1 inhibition in OA progression. Results. The results showed that inhibition of Sat1 expression can reduce inflammation, ferroptosis changes, reactive oxygen species (ROS) level, and lipid-ROS accumulation induced by IL-1β and Erastin. Knockdown of Sat1 promotes nuclear factor-E2-related factor 2 (Nrf2) signalling. Additionally, knockdown Alox15 can alleviate the inflammation-related protein expression induced by IL-1β and ferroptosis-related protein expression induced by Erastin. Furthermore, knockdown Nrf2 can reverse these protein expression alterations. Finally, intra-articular injection of diminazene aceturate (DA), an inhibitor of Sat1, enhanced type II collagen (collagen II) and increased Sat1 and Alox15 expression. Conclusion. Our results demonstrate that inhibition of Sat1 could alleviate chondrocyte ferroptosis and inflammation by downregulating Alox15 activating the Nrf2 system, and delaying the progression of OA. These findings suggest that Sat1 provides a new approach for studying and treating OA. Cite this article: Bone Joint Res 2024;13(3):110–123


Bone & Joint Research
Vol. 9, Issue 11 | Pages 751 - 760
1 Nov 2020
Li Y Lin X Zhu M Xun F Li J Yuan Z Liu Y Xu H

Aims. This study aimed to investigate the effect of solute carrier family 20 member 2 (SLC20A2) gene mutation (identified from a hereditary multiple exostoses family) on chondrocyte proliferation and differentiation. Methods. ATDC5 chondrocytes were cultured in insulin-transferrin-selenium medium to induce differentiation. Cells were transfected with pcDNA3.0 plasmids with either a wild-type (WT) or mutated (MUT) SLC20A2 gene. The inorganic phosphate (Pi) concentration in the medium of cells was determined. The expression of markers of chondrocyte proliferation and differentiation, the Indian hedgehog (Ihh), and parathyroid hormone-related protein (PTHrP) pathway were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting. Results. The expression of SLC20A2 in MUT group was similar to WT group. The Pi concentration in the medium of cells in MUT group was significantly higher than WT group, which meant the SLC20A2 mutation inhibited Pi uptake in ATDC5 chondrocytes. The proliferation rate of ATDC5 chondrocytes in MUT group was greater than WT group. The expression of aggrecan (Acan), α-1 chain of type II collagen (COL2A1), and SRY-box transcription factor 9 (SOX9) were higher in MUT group than WT group. However, the expression of Runt-related transcription factor 2 (Runx2), α-1 chain of type X collagen (COL10A1), and matrix metallopeptidase 13 (MMP13) was significantly decreased in the MUT group. Similar results were obtained by Alcian blue and Alizarin red staining. The expression of Ihh and PTHrP in MUT group was higher than WT group. An inhibitor (cyclopamine) of Ihh/PTHrP signalling pathway inhibited the proliferation and restored the differentiation of chondrocytes in MUT group. Conclusion. A mutation in SLC20A2 (c.C1948T) decreases Pi uptake in ATDC5 chondrocytes. SLC20A2 mutation promotes chondrocyte proliferation while inhibiting chondrocyte differentiation. The Ihh/PTHrP signalling pathway may play an important role in this process. Cite this article: Bone Joint Res 2020;9(11):751–760


Objectives. Activation of the leptin pathway is closely correlated with human knee cartilage degeneration. However, the role of the long form of the leptin receptor (Ob-Rb) in cartilage degeneration needs further study. The aim of this study was to determine the effect of increasing the expression of Ob-Rb on chondrocytes using a lentiviral vector containing Ob-Rb. Methods. The medial and lateral cartilage samples of the tibial plateau from 12 osteoarthritis (OA) patients were collected. Ob-Rb messenger RNA (mRNA) was detected in these samples. The Ob-Rb-overexpressing chondrocytes and controls were treated with different doses of leptin for two days. The activation of the p53/p21 pathway and the number of senescence-associated β-galactosidase (SA-β-gal)-positive cells were evaluated. The mammalian target of rapamycin (mTOR) signalling pathway and autophagy were detected after the chondrocytes were treated with a high dose of leptin. Results. In total, 12 cases were found to have severe medial cartilage wear compared with the lateral cartilage. Immunofluorescence showed that the expression of Ob-Rb in the medial cartilage of the tibial plateau was high. High levels of leptin led to cell cycle arrest and inhibited autophagy. After overexpression of Ob-Rb, the physiological dose of leptin induced cell senescence in the chondrocytes. High doses of leptin inhibited autophagy by activating the mTOR signalling pathway. Blockade of the mTOR signalling pathway could restore autophagy and partially reverse senescence induced by leptin in chondrocytes. Conclusion. In summary, the present study demonstrated that high doses of leptin induce cell senescence by activating the mTOR pathway in chondrocytes from OA cartilage. Highly expressed Ob-Rb accelerates chondrocyte senescence by activating the leptin pathway in OA. Cite this article: X. Zhao, P. Huang, G. Li, L. Zhendong, G. Hu, Q. Xu. Activation of the leptin pathway by high expression of the long form of the leptin receptor (Ob-Rb) accelerates chondrocyte senescence in osteoarthritis. Bone Joint Res 2019;8:425–436. DOI: 10.1302/2046-3758.89.BJR-2018-0325.R2


Bone & Joint Research
Vol. 7, Issue 6 | Pages 414 - 421
1 Jun 2018
Yu CD Miao WH Zhang YY Zou MJ Yan XF

Objectives. The aim of this study was to investigate the role of miR-126 in the development of osteoarthritis, as well as the potential molecular mechanisms involved, in order to provide a theoretical basis for osteoarthritis treatment and a novel perspective for clinical therapy. Methods. Human chondrocyte cell line CHON-001 was administrated by different doses of interleukin (IL)-1β to simulate inflammation. Cell viability, migration, apoptosis, IL-6, IL-8, and tumour necrosis factor (TNF)-α expression, as well as expression of apoptosis-related factors, were measured to assess inflammation. miR-126 expression was measured by quantitative polymerase chain reaction (qPCR). Cells were then transfected with miR-126 inhibitor to assess the effect of miR-126 on IL-1β-injured CHON-001 cells. Expression of B-cell lymphoma 2 (Bcl-2) and the activity of mitogen-activated protein kinase (MAPK) / Jun N-terminal kinase (JNK) signaling pathway were measured by Western blot to explore the underlying mechanism through which miR-126 affects IL-1β-induced inflammation. Results. After IL-1β administration, cell viability and migration were suppressed while apoptosis was enhanced. Expression of IL-6, IL-8, and TNF-α were all increased, and miR-126 was upregulated. In IL-1β-administrated CHON-001 cells, miR-126 inhibitor suppressed the effect of IL-1β on cell viability, migration, apoptosis, and inflammatory response. Bcl-2 expression was negatively regulated with miR-126 in IL-1β-administrated cells, and thus affected expressions of phosphorylated MAPK and JNK. Conclusion. IL-1β-induced inflammatory markers and miR-126 was upregulated. Inhibition of miR-126 decreased IL-1β-induced inflammation and cell apoptosis, and upregulated Bcl-2 expression via inactivating the MAKP/JNK signalling pathway. Cite this article: C. D. Yu, W. H. Miao, Y. Y. Zhang, M. J. Zou, X. F. Yan. Inhibition of miR-126 protects chondrocytes from IL-1β induced inflammation via upregulation of Bcl-2. Bone Joint Res 2018;7:414–421. DOI: 10.1302/2046-3758.76.BJR-2017-0138.R1


Bone & Joint Research
Vol. 12, Issue 1 | Pages 46 - 57
17 Jan 2023
Piñeiro-Ramil M Sanjurjo-Rodríguez C Rodríguez-Fernández S Hermida-Gómez T Blanco-García FJ Fuentes-Boquete I Vaamonde-García C Díaz-Prado S

Aims. After a few passages of in vitro culture, primary human articular chondrocytes undergo senescence and loss of their phenotype. Most of the available chondrocyte cell lines have been obtained from cartilage tissues different from diarthrodial joints, and their utility for osteoarthritis (OA) research is reduced. Thus, the goal of this research was the development of immortalized chondrocyte cell lines proceeded from the articular cartilage of patients with and without OA. Methods. Using telomerase reverse transcriptase (hTERT) and SV40 large T antigen (SV40LT), we transduced primary OA articular chondrocytes. Proliferative capacity, degree of senescence, and chondrocyte surface antigen expression in transduced chondrocytes were evaluated. In addition, the capacity of transduced chondrocytes to synthesize a tissue similar to cartilage and to respond to interleukin (IL)-1β was assessed. Results. Coexpression of both transgenes (SV40 and hTERT) were observed in the nuclei of transduced chondrocytes. Generated chondrocyte cell lines showed a high proliferation capacity and less than 2% of senescent cells. These cell lines were able to form 3D aggregates analogous to those generated by primary articular chondrocytes, but were unsuccessful in synthesizing cartilage-like tissue when seeded on type I collagen sponges. However, generated chondrocyte cell lines maintained the potential to respond to IL-1β stimulation. Conclusion. Through SV40LT and hTERT transduction, we successfully immortalized chondrocytes. These immortalized chondrocytes were able to overcome senescence in vitro, but were incapable of synthesizing cartilage-like tissue under the experimental conditions. Nonetheless, these chondrocyte cell lines could be advantageous for OA investigation since, similarly to primary articular chondrocytes, they showed capacity to upregulate inflammatory mediators in response to the IL-1β cytokine. Cite this article: Bone Joint Res 2023;12(1):46–57


Bone & Joint Research
Vol. 12, Issue 12 | Pages 734 - 746
12 Dec 2023
Chen M Hu C Hsu Y Lin Y Chen K Ueng SWN Chang Y

Aims. Therapeutic agents that prevent chondrocyte loss, extracellular matrix (ECM) degradation, and osteoarthritis (OA) progression are required. The expression level of epidermal growth factor (EGF)-like repeats and discoidin I-like domains-containing protein 3 (EDIL3) in damaged human cartilage is significantly higher than in undamaged cartilage. However, the effect of EDIL3 on cartilage is still unknown. Methods. We used human cartilage plugs (ex vivo) and mice with spontaneous OA (in vivo) to explore whether EDIL3 has a chondroprotective effect by altering OA-related indicators. Results. EDIL3 protein prevented chondrocyte clustering and maintained chondrocyte number and SOX9 expression in the human cartilage plug. Administration of EDIL3 protein prevented OA progression in STR/ort mice by maintaining the number of chondrocytes in the hyaline cartilage and the number of matrix-producing chondrocytes (MPCs). It reduced the degradation of aggrecan, the expression of matrix metalloproteinase (MMP)-13, the Osteoarthritis Research Society International (OARSI) score, and bone remodelling. It increased the porosity of the subchondral bone plate. Administration of an EDIL3 antibody increased the number of matrix-non-producing chondrocytes (MNCs) in cartilage and exacerbated the serum concentrations of OA-related pro-inflammatory cytokines, including monocyte chemotactic protein-3 (MCP-3), RANTES, interleukin (IL)-17A, IL-22, and GROα. Administration of β1 and β3 integrin agonists (CD98 protein) increased the expression of SOX9 in OA mice. Hence, EDIL3 might activate β1 and β3 integrins for chondroprotection. EDIL3 may also protect cartilage by attenuating the expression of IL-1β-enhanced phosphokinase proteins in chondrocytes, especially glycogen synthase kinase 3 alpha/beta (GSK-3α/β) and phospholipase C gamma 1 (PLC-γ1). Conclusion. EDIL3 has a role in maintaining the cartilage ECM and inhibiting the development of OA, making it a potential therapeutic drug for OA. Cite this article: Bone Joint Res 2023;12(12):734–746


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 142 - 142
11 Apr 2023
Algarni M Amin A Hall A
Full Access

Cartilage degeneration and loss are key events in the initiation and progression of osteoarthritis (OA). Changes to chondrocyte volume and morphology (in the form of cytoplasmic processes) and thus cell phenotype are implicated, as they lead to the production of a mechanically-weakened extracellular matrix. The chondrocyte cytoskeleton is intimately linked to cell volume and morphology and hence we have investigated alterations to levels and distribution of chondrocyte F-actin that occur during early OA. The femoral heads (FH) from hip joints (N=16) were obtained with ethical permission and patient consent following femoral neck fracture. Cartilage was assessed as grade 0 (non-degenerate) and grade 1 (superficial fibrillation) using OARSI criteria. In situ chondrocyte volume and F-actin distribution were assessed using the fluorescent indicators (5-chloromethyl fluorescein diacetate (CMFDA)) and phalloidin, and imaged and quantified by confocal microscopy, Imaris. TM. and ImageJ software. There were no differences between the volume or total F-actin levels of in situ chondrocytes within the superficial zone of grade 0 (n=164 cells) compared to grade 1 (n=145) cartilage (P>0.05). However, a more detailed analysis of phalloidin labelling was performed, which demonstrated significant increases in both intense punctuate (IP) or intense areas (IA) (P<0.0001; P=0.0175 respectively). A preliminary analysis of IP and IA F-actin labelling suggested that while the former did not appear to be associated with changes to chondrocyte morphology, most of the cytoplasmic processes were associated with the presence of IA at the starting point of the protrusion. These results demonstrate marked changes to F-actin distribution in chondrocytes in the very early stages of cartilage degeneration as occurs in OA. These subtle changes are probably an early indication of a change to the chondrocyte phenotype and thus worthy of further study as they may lead to deleterious alterations to matrix metabolism and ultimately cartilage weakening


Bone & Joint Research
Vol. 11, Issue 9 | Pages 669 - 678
1 Sep 2022
Clement RGE Hall AC Wong SJ Howie SEM Simpson AHRW

Aims. Staphylococcus aureus is a major cause of septic arthritis, and in vitro studies suggest α haemolysin (Hla) is responsible for chondrocyte death. We used an in vivo murine joint model to compare inoculation with wild type S. aureus 8325-4 with a Hla-deficient strain DU1090 on chondrocyte viability, tissue histology, and joint biomechanics. The aim was to compare the actions of S. aureus Hla alone with those of the animal’s immune response to infection. Methods. Adult male C57Bl/6 mice (n = 75) were randomized into three groups to receive 1.0 to 1.4 × 10. 7. colony-forming units (CFUs)/ml of 8325-4, DU1090, or saline into the right stifle joint. Chondrocyte death was assessed by confocal microscopy. Histological changes to inoculated joints were graded for inflammatory responses along with gait, weight changes, and limb swelling. Results. Chondrocyte death was greater with 8325-4 (96.2% (SD 5.5%); p < 0.001) than DU1090 (28.9% (SD 16.0%); p = 0.009) and both were higher than controls (3.8% (SD 1.2%)). Histology revealed cartilage/bone damage with 8325-4 or DU1090 compared to controls (p = 0.010). Both infected groups lost weight (p = 0.006 for both) and experienced limb swelling (p = 0.043 and p = 0.018, respectively). Joints inoculated with bacteria showed significant alterations in gait cycle with a decreased stance phase, increased swing phase, and a corresponding decrease in swing speed. Conclusion. Murine joints inoculated with Hla-producing 8325-4 experienced significantly more chondrocyte death than those with DU1090, which lack the toxin. This was despite similar immune responses, indicating that Hla was the major cause of chondrocyte death. Hla-deficient DU1090 also elevated chondrocyte death compared to controls, suggesting a smaller additional deleterious role of the immune system on cartilage. Cite this article: Bone Joint Res 2022;11(9):669–678


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 47 - 47
17 Nov 2023
Algarni M Amin A Hall A
Full Access

Abstract. Objectives. Osteoarthritis (OA) is a painful and debilitating disorder of diarthroidal joints. Progressive degeneration of the cartilage extracellular matrix (ECM) together with abnormal chondrocyte characteristics occur leading to a switch to a fibroblast-like phenotype and production of mechanically-weak cartilage. Early changes to chondrocytes within human cartilage have been observed including chondrocyte swelling. [1]. together with the development of thin cytoplasmic processes which increase in number and length with degeneration. [2]. Changes to chondrocyte phenotype in degenerate cartilage are associated with F-actin redistribution and stress fibres (SF) formation, leading to morphologically-dedifferentiated (fibroblast-like) chondrocytes. [3,4]. It is unclear if these processes are a consequence of ‘passive’ cell swelling into a defective ECM or an ‘active’ event driven by changes in cell metabolism resulting in alterations to cell shape. To address this, we have quantified and compared the distribution and levels of F-actin, a key cytoskeletal protein involved in the formation of cytoplasmic processes, within in situ chondrocytes in non-degenerate and mildly degenerate human cartilage. Methods. Human femoral head cartilage was obtained from 21 patients [15 females, 6 males, average age 69.6yrs, (range 47–90yrs)] following femoral neck fracture, with Ethical Approval and patient's permission. Cartilage explants were removed from areas graded non-degenerate grade 0 (G0) or mildly degenerate grade 1 (G1) and cultured for up to 3wks in Dulbecco's Modified Eagle's Medium (DMEM) +/− 25% human serum (HS). In situ chondrocytes were stained with CMFDA (5-chloromethylfluoresceindiacetate, Cell-Tracker Green®) and phalloidin (F-actin labelling) and imaged by confocal microscopy and analysed quantitatively using ImageJ and Imaris® software. Results. There were significant increases in the total amount (TA) of F-actin and its distribution [intense punctuate (IP) and intense areas (IA)] between the whole chondrocyte populations of G0 and G1 cartilage (P=0.0356; 0.0112; 0.016, respectively). Where the volume of chondrocytes was divided into normal (<1000 µm³) and swollen (≥1000 µm³) cells, F-actin TA increased in swollen cells (P=0.036 within G0 and G1, and P=0.0009 between grades) compared to chondrocytes of normal volume in each grade. Moreover, IP and IA within and between G0 and G1 were higher compared to normal chondrocytes (with P<0.0001 for IP and P<0.001 for IA). In addition, tissue culture experiments demonstrated that 90% of chondrocytes with cytoplasmic processes had strong F-actin intensity (either IP or IA with P<0.0001). Furthermore, 83% of this F-actin was associated with cytoplasmic processes, with >65% situated at the base of the process (P<0.0001). Conclusions. The increases in chondrocyte F-actin levels (TA) and its localisation (IP, IA) appear to be associated with cell swelling and development of cytoplasmic processes, which are both characteristics of early OA cartilage. [1]. This suggests the formation of chondrocyte cytoplasmic processes is an ‘active’ event potentially involving changes to matrix metabolism rather than a ‘passive’ cell swelling into a defective extracellular matrix. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 99 - 99
14 Nov 2024
Umrath F Liang C Jud S Alexander D Danalache M
Full Access

Introduction. Osteoarthritis (OA) often results from joint misloading, which affects chondrocyte calcium signaling through mechano-sensitive receptors such as Piezo1, -2, and TRPV4. Activation of Piezo1, especially under inflammatory conditions, can trigger premature chondrocyte apoptosis. Intra-articular glucocorticoid therapy, while beneficial against inflammation and pain in osteoarthritis, may induce oxidative stress and chondrotoxicity at higher doses. This study aims to assess the effects of glucocorticoids, particularly triamcinolone, on chondrocyte elasticity and mechanosignaling. Method. Chondrocytes isolated from articular condyles obtained from patients undergoing knee replacement surgery (n= 5) were cultured for 7 days in triamcinolone acetonide (TA) at different concentrations (0.2µM – 2mM). Cytoskeletal changes were assessed by F-actin labeling. Cell elasticity was measured using atomic force microscopy (AFM). Labeling cells (n=6 patients) with the calcium-sensitive dye (Fluo-4) enabled monitoring changes in intracellular calcium fluorescence intensity during guided single-cell mechanical indentation (500 nN) by AFM. Result. Cell exposure to 2 mM TA led to cell death and crystallization of TA in the cell culture media. However, the concentration of TA for intra-articular application is 46 times higher at 92.1 mM (40 mg/ml). The maximal pharmacological effect on viable cells was observed at 0.2 mM. AFM results showed a significant decrease of elasticity (p<0.001), alongside significantly higher calcium intensities both prior to and during mechanical stimulation in the TA-treated samples (p<0.05). Conclusion. Administration of TA significantly impacts the mechanical properties of chondrocytes, reducing cellular elasticity while simultaneously enhancing calcium-dependent mechanosensitivity. This data suggests a correlation between glucocorticoid-induced changes in cell elasticity and cell mechanosensitivity. Finding ways to minimize the effect of glucocorticoids on cell mechanosensitivity could help to make future therapies safer and reduce side effects


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 7 - 7
11 Apr 2023
Hart M Selig M Azizi S Walz K Lauer J Rolauffs B
Full Access

While cell morphology has been recognized as a fundamental regulator of cell behavior, few studies have measured the complex cell morphological changes of chondrocytes using quantitative cell morphometry descriptors in relation to inflammation and phenotypic outcome. Acute vs. persistent exposure to IL-1β and how IL-1β modulated dynamic changes in cell morphology in relation to the phenotype, donor and OA grade in healthy and osteoarthritis (OA) chondrocytes was investigated. A panel of quantitative cell morphometry descriptors was measured using an automated high-throughput method. Absolute quantification of gene expression was measured by ddPCR followed by correlation analyses. In OA chondrocytes, chronic IL-1β significantly decreased COL2A1, SOX9, and ACAN, increased IL-6 and IL-8 levels and caused chondrocytes to become less wide, smaller, longer, slimmer, less round and more circular, consistent with a de-differentiated phenotype. In healthy chondrocytes, 3 days after acute (72 h) IL-1β exposure, COL1A2 and IL-6 significantly increased but had minor effects on cell morphology. However, in healthy chondrocytes, persistent IL-1β led to more profound effects in all cell morphology descriptors and chondrocytes expressed significantly less COL2A1 and more IL-6 and IL-8 vs. controls and acutely-stimulated chondrocytes. In both OA and healthy chronically-stimulated chondrocytes, area, width and circularity were sensitive to the persistent presence of the IL-1β cytokine. Moreover, there were many significant and strong correlations among the measured parameters, with several indications of an IL-1β-mediated mechanism. Cell morphology combined with gene expression analysis could guide researchers interested in understanding inflammatory effects in the complex domain of cartilage/chondrocyte biology. Use of quantitative cell morphometry could complement classical approaches by providing numerical data on a large number of cells, thereby providing a biological fingerprint for describing chondrocyte phenotype, which could help to understand how changes in cell morphology lead to disease progression


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 124 - 124
2 Jan 2024
Pascuet-Fontanet A Segarra-Queralt M Noailly J
Full Access

Osteoarthritis (OA) leads to articular cartilage degradation, following complex dysregulation of chondrocyte's metabolism towards a catabolic state. Mechanical and biochemical signals are involved and need to be considered to understand the condition. Regulatory network-based models (RNM) successfully simulated the biological activity of the chondrocyte and the transduction of mechanical signals at the molecular and cell levels. However, the knowledge gap between single-cell regulation and intercellular communication in tissue volumes hinders the interpretability of such models at larger scales. Accordingly, a novel tissue-level biochemical model is proposed. We hypothesise that it is possible to simulate interacting network effects through the transport of diluted species in a finite-element model, to grasp relevant dynamics of cell and tissue regulation in OA. Chondrocyte RNM equations were translated into a reaction term of 18 multi-species diffusion model (e.g., 3 anti-inflammatory and 8 pro-inflammatory interleukins, 3 pro-anabolic and 1 pro-catabolic growth factors, 2 nociceptive factors and 2 pro-inflammatory cytokines). Elements with RNM reaction terms represented the chondrocytes and were distributed randomly through the model, according to known cellular density in the knee cartilage, and could both react to and produce diffusive entities through the pericellular matrix, associated with reduced diffusion coefficients. The model was constructed over a 2D square of 0.47 mm sides considered to be in the middle of the cartilage, so boundary conditions were settled as periodic. Different simulations were initialised with initial concentrations of either healthy or pro-OA mediators. Preliminary results showed that, independently of the initial conditions, the chondrocytes successfully evolved into anabolic states, in absence of sustained pro-catabolic external stimulations, in contrast to single-cell RNM [2]. Our intercellular model suggests that paracrine communication may increase robustness towards cartilage maintenance, and future tests shall reveal new OA dynamics. Acknowledgements: Funding was provided by the European Commission (ERC-2021-CoG-O-Health-101044828)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 127 - 127
2 Jan 2024
Strangmark E Wang J Hosni RA Muhammad H Alkhrayef M Robertson-Waters E MacMillan A Gompels B Vogt A Khan W Birch M McCaskie A
Full Access

Cell culture on tissue culture plastic (TCP) is widely used across biomedical research to understand the in vivo environment of a targeted biological system. However, growing evidence indicates that the characteristics of cells investigated in this way differ substantially from their characteristics in the human body. The limitations of TCP monolayer cell cultures are especially relevant for chondrocytes, the cell population responsible for producing cartilage matrix, because their zonal organization in hyaline cartilage is not preserved in a flattened monolayer assay. Here, we contrast the response of primary human chondrocytes to inflammatory cytokines, tumor necrosis factor-alpha and interferon-gamma, via transcriptional, translational, and histological profiling, when grown either on TCP or within a 3D cell pellet (scaffold-less). We focus on anti-apoptotic (Bcl2), pro-apoptotic (Bax, Mff, Fis1), and senescent (MMP13, MMP1, PCNA, p16, p21) markers. We find that the 3D environment of the chondrocyte has a profound effect on the behavior and fate of the cell; in TCP monolayer cultures, chondrocytes become anti-apoptotic and undergo senescence in response to inflammatory cytokines, whereas in 3D cell pellet cultures, they exhibit a pro-apoptotic response. Our findings demonstrate that chondrocyte culture environment plays a pivotal role in cell behavior, which has important implications for the clinical applicability of in vitro research of cartilage repair. Although there are practical advantages to 2D cell cultures, our data suggest researchers should be cautious when drawing conclusions if they intend to extrapolate findings to in vivo phenomena. Our data demonstrates opposing chondrocyte responses in relation to apoptosis and senescence, which appear to be solely reliant on the environment of the culture system. This biological observation highlights that proper experimental design is crucial to increase the clinical utility of cartilage repair experiments and streamline their translation to therapy development


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 57 - 57
17 Nov 2023
Strangmark E Wang JH Hosni RA Muhammad H Alkhrayef M Robertson-Waters E MacMillan A Gompels B Vogt A Khan W Birch M McCaskie A
Full Access

Abstract. BACKGROUND. Cell culture on tissue culture plastic (TCP) is widely used across biomedical research to understand the in vivo environment of a targeted biological system. However, growing evidence indicates that the characteristics of cells investigated in this way differ substantially from their characteristics in the human body. The limitations of TCP monolayer cell cultures are especially relevant for chondrocytes, the cell population responsible for producing cartilage matrix, because their zonal organization in hyaline cartilage is not preserved in a flattened monolayer assay. OBJECTIVE. Here, we contrast the response of primary human chondrocytes to inflammatory cytokines, tumor necrosis factor-alpha and interferon-gamma, via transcriptional, translational, and histological profiling, when grown either on TCP or within a 3D cell pellet (scaffold-less). We focus on anti-apoptotic (Bcl2), pro-apoptotic (Bax, Mff, Fis1), and senescent (MMP13, MMP1, PCNA, p16, p21) markers. RESULTS. We find that the 3D environment of the chondrocyte has a profound effect on the behavior and fate of the cell; in TCP monolayer cultures, chondrocytes become anti-apoptotic and undergo senescence in response to inflammatory cytokines, whereas in 3D cell pellet cultures, they exhibit a pro-apoptotic response. CONCLUSION. Our findings demonstrate that chondrocyte culture environment plays a pivotal role in cell behavior, which has important implications for the clinical applicability of in vitro research of cartilage repair. Although there are practical advantages to 2D cell cultures, our data suggest researchers should be cautious when drawing conclusions if they intend to extrapolate findings to in vivo phenomena. Our data demonstrates opposing chondrocyte responses in relation to apoptosis and senescence, which appear to be solely reliant on the environment of the culture system. This biological observation highlights that proper experimental design is crucial to increase the clinical utility of cartilage repair experiments and streamline their translation to therapy development. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 100 - 100
14 Nov 2024
Castorena JG Riester R Ornelas MG Guilak F Danalache M
Full Access

Introduction. Piezo1 is a mechanosensitive Ca. 2+. ion channel that has been shown to transduce hyper-physiologic mechanical loads in chondrocytes. In osteoarthritic cartilage, Piezo1 expression was shown to be upregulated by interleukin-1 alpha (IL-1α) and resulted in altered calcium dynamics and actin cytoskeleton rarefication. Together these studies highlight the importance of Piezo1 channels during joint injury. However, the mechanism by which Piezo1 regulates chondrocyte physiology and mechanotransduction during homeostasis is still largely unknown. In this study, we investigate the impact of Piezo1 activation on nuclear mechanics and chromatin methylation state. Methods. Porcine chondrocytes (n=3-5 pigs) were treated with Yoda1, a Piezo1-specific agonist, for either 2, 5, 15 or 180 minutes. To characterize chromatin state, we monitored the abundance of a chromatin methylation marker (H3K9Me3) using immunofluorescence (IF). Atomic force microscopy (AFM, 25 nm cantilever) was employed to quantify the nuclear elastic modulus (NEM) of individual cell nuclei. To explore the interplay between cytoskeletal dynamics and nuclear mechanics, chondrocytes were treated with Latrunculin A (LatA), an actin polymerization inhibitor. Result. IF experiments showed chromatin methylation was the lowest 2 minutes post Yoda1 activation of Piezo1 (p=0.027). Additionally, we found that 2 or 5 minutes post-Piezo1 activation resulted in a significantly lower NEM when compared to the control (p<0.00001). The observed decrease in NEM at 2 and 5 minutes post-Piezo1 activation was not observed after knocking down Piezo1 (p>0.99). In LatA treated cells, the elevated NEM persisted even after Piezo1 activation with Yoda1 (p>0.75). Conclusion. These findings illuminate the mechanism by which Piezo1 activation and actin remodeling regulate transient mechanotransduction during homeostasis. Further research into the transient decrease in nuclear stiffness and chromatin methylation observed during the initial 5 minutes of Piezo1-induced Ca2+ signaling, may contribute to a better understanding of the role of Piezo1 channels in joint injury and development of therapeutic interventions for osteoarthritis


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 56 - 56
17 Nov 2023
Algarni M Amin A Hall A
Full Access

Abstract. Objectives. Osteoarthritis (OA) is a complex joint disorder characterised by the loss of extracellular matrix (ECM) leading to cartilage degeneration. Changes to cartilage cell (chondrocyte) behaviour occur including cell swelling, the development of fine cytoplasmic processes and cell clustering leading to changes in cell phenotype and development of focal areas of mechanically-weak fibrocartilaginous matrix. [1]. To study the sequence of events in more detail, we have investigated the changes to in situ chondrocytes within human cartilage which has been lightly scraped and then cultured with serum. Methods. Human femoral heads were obtained with Ethical permission and consent from four female patients (mean age 74 yrs) undergoing hip arthroplasty following femoral neck fracture. Osteochondral explants of macroscopically-normal cartilage were cultured as a non-scraped control, or scraped gently six times with a scalpel blade and both maintained in culture for up to 2wks in Dulbecco's Modified Eagle's Medium (DMEM) with 25% human serum (HS). Explants were then labelled with CMFDA (5-chloromethylfluorescein-diacetate) and PI (propidium iodide) (10μM each) to identify the morphology of living or dead chondrocytes respectively. Explants were imaged using confocal microscopy and in situ chondrocyte morphology, volume and clustering assessed quantitatively within standardised regions of interest (ROI) using Imaris. ®. imaging software. Results. Within 2wks of culture with HS, chondrocyte volume increased significantly from 412±9.3µm. 3. (unscraped) at day 0 to 724±16.6 µm. 3. (scraped) [N(n) = 4(380)] (P=0.0002). Chondrocyte clustering was a prominent feature of HS culture as the percentage of clusters in the cell population increased with scraping from 4.8±1.4% to 14.9±3.9% [N(n) = 4(999)] at week 2 (P=0.0116). In addition, the % of the chondrocyte population within clusters increased from approximately 38% to 60%, and the number of cells per cluster increased significantly from 3.2±0.08 to 4±0.22 (P=0.031). The development of abnormal ‘fibroblastic-like’ chondrocyte morphology demonstrating long (>5µm) cytoplasmic processes also occurred, however the time course of this was more variable. For some samples, clustering occurred before abnormal morphology, but for others the opposite occurred. Typically, by the second week, 17±2.64% of the cell population had processes and this increased to 22±4.02% [N(n) = 4(759)] with scraping. Conclusions. Scraping the cartilage will remove surface constituents including lubricants (e.g. lubricin, hyaluronic acid, phospholipids), extracellular matrix constituents (collagen, proteoglycans – potentially the ‘lamina splendens’) and cells (chondrocytes and mesenchymal stromal cells (MSCs)). Although we do not know which of these component(s) is important, the effect is to dramatically increase the permeation of serum factors into the cartilage matrix and signal the development of cytoplasmic processes, cell clustering and swelling. It is notable that these cellular changes are similar to those occurring in early OA. [1]. This raises the interesting possibility that scraped cartilage cultured with human serum recapitulates some of the changes to in situ chondrocytes during early stages of cartilage degeneration and as such, could be a useful model for following the deleterious changes to matrix metabolism. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Bone & Joint Research
Vol. 9, Issue 2 | Pages 82 - 89
1 Feb 2020
Chen Z Zhang Z Guo L Wei X Zhang Y Wang X Wei L

Chondrocyte hypertrophy represents a crucial turning point during endochondral bone development. This process is tightly regulated by various factors, constituting a regulatory network that maintains normal bone development. Histone deacetylase 4 (HDAC4) is the most well-characterized member of the HDAC class IIa family and participates in different signalling networks during development in various tissues by promoting chromatin condensation and transcriptional repression. Studies have reported that HDAC4-null mice display premature ossification of developing bones due to ectopic and early-onset chondrocyte hypertrophy. Overexpression of HDAC4 in proliferating chondrocytes inhibits hypertrophy and ossification of developing bones, which suggests that HDAC4, as a negative regulator, is involved in the network regulating chondrocyte hypertrophy. Overall, HDAC4 plays a key role during bone development and disease. Thus, understanding the role of HDAC4 during chondrocyte hypertrophy and endochondral bone formation and its features regarding the structure, function, and regulation of this process will not only provide new insight into the mechanisms by which HDAC4 is involved in chondrocyte hypertrophy and endochondral bone development, but will also create a platform for developing a therapeutic strategy for related diseases. Cite this article:Bone Joint Res. 2020;9(2):82–89