Aims. While internet search engines have been the primary information source for patients’ questions, artificial intelligence large language models like
Introduction. The recent introduction of Chatbots has provided an interactive medium to answer patient questions. The accuracy of responses with these programs in limb lengthening and reconstruction surgery has not previously been determined. Therefore, the purpose of this study was to assess the accuracy of answers from 3 free AI chatbot platforms to 23 common questions regarding treatment for limb lengthening and reconstruction. Method. We generated a list of 23 common questions asked by parents before their child's limb lengthening and reconstruction surgery. Each question was posed to three different AI chatbots (ChatGPT 3.5 [OpenAI], Google Bard, and Microsoft Copilot [Bing!]) by three different answer retrievers on separate computers between November 17 and November 18, 2023. Responses were only asked one time to each chatbot by each answer retriever. Nine answers (3 answer retrievers × 3 chatbots) were randomized and platform-blinded prior to rating by three orthopedic surgeons. The 4-point rating system reported by Mika et al. was used to grade all responses. Result.
Cite this article:
The use of artificial intelligence (AI) is rapidly growing across many domains, of which the medical field is no exception. AI is an umbrella term defining the practical application of algorithms to generate useful output, without the need of human cognition. Owing to the expanding volume of patient information collected, known as ‘big data’, AI is showing promise as a useful tool in healthcare research and across all aspects of patient care pathways. Practical applications in orthopaedic surgery include: diagnostics, such as fracture recognition and tumour detection; predictive models of clinical and patient-reported outcome measures, such as calculating mortality rates and length of hospital stay; and real-time rehabilitation monitoring and surgical training. However, clinicians should remain cognizant of AI’s limitations, as the development of robust reporting and validation frameworks is of paramount importance to prevent avoidable errors and biases. The aim of this review article is to provide a comprehensive understanding of AI and its subfields, as well as to delineate its existing clinical applications in trauma and orthopaedic surgery. Furthermore, this narrative review expands upon the limitations of AI and future direction. Cite this article: