One of the drawbacks of cemented total hip arthroplasty (THA) is aseptic loosening after long period, major reason for which is bioinertness of PMMA bone cement. To improve longevity of THA, interface bio-active bone cement technique combined with
Aim. To compare radiological and clinical outcomes between triceps-detaching and triceps-sparing approaches in total elbow arthroplasty, with specific focus on cementing technique and post-operative range of motion. Methods. A retrospective review was completed of medical records and radiographs of 56 consecutively managed patients who underwent a primary total elbow arthroplasty between 2000 and 2012 at a tertiary hospital. Rheumatoid Arthritis was the predominant pathology (47/56). Data analysed included patient demographics, range of motion pre-operatively and at various stages post-operatively, approach utilized, operative time and complications.
There exists a lot literature referring to the cementing technique of hip replacements, but when talking about longevity of knee prostheses only seldom the cementing technique is mentioned even though 90% of the knees are cemented. Especially the tibial component, that has to cope with different forces such as pressure, rotation, tilt and sliding, is said to last longer when cemented.
Aseptic loosening is the most common cause of failure following cemented total knee arthroplasty (TKA), and has been linked to poor cementation technique. We aimed to develop a consensus on the optimal technique for component cementation in TKA. A UK-based, three-round, online modified Delphi Expert Consensus Study was completed focusing on cementation technique in TKA. Experts were identified as having a minimum of five years’ consultant experience in the NHS and fulfilling any one of the following criteria: a ‘high volume’ knee arthroplasty practice (> 150 TKAs per annum) as identified from the National joint Registry of England, Wales, Northern Ireland and the Isle of Man; a senior author of at least five peer reviewed articles related to TKA in the previous five years; a surgeon who is named trainer for a post-certificate of comletion of training fellowship in TKA.Aims
Methods
Highly polished stems with force-closed design have shown satisfactory clinical results despite being related to relatively high early migration. It has been suggested that the minimal thickness of cement mantles surrounding the femoral stem should be 2 mm to 4 mm to avoid aseptic loosening. The line-to-line cementing technique of the femoral stem, designed to achieve stem press-fit, challenges this opinion. We compared the migration of a highly polished stem with force-closed design by standard and line-to-line cementing to investigate whether differences in early migration of the stems occur in a clinical study. In this single-blind, randomized controlled, clinical radiostereometric analysis (RSA) study, the migration pattern of the cemented Corail hip stem was compared between line-to-line and standard cementing in 48 arthroplasties. The primary outcome measure was femoral stem migration in terms of rotation and translation around and along with the X-, Y-, and Z- axes measured using model-based RSA at three, 12, and 24 months. A linear mixed-effects model was used for statistical analysis.Aims
Methods
Total Hip Arthroplasty (THA) is currently one of the most widely performed surgical procedures in clinical orthopaedic practice. Despite the recorded number of uncemented implants has steadily increased in recent years, cemented fixation still remains the benchmark in THA, accounting for most of the procedures performed nowadays. The Friendly Short is a novel cemented short-stem that grants a less invasive and more bone conservative approach due to its shortened height and innovative cementing technique. It is indicated to treat elderly patients with the aim of preserving bone diaphysis while decreasing postoperative recovery times. Its instrument set allows to optimize the cement mantle thickness via an improved pressurization and stem centralization system. Aim of this prospective study was to evaluate functional recovery and implant stability after THA with this cemented short-stem.Introduction
Objectives
Aseptic loosening has been reported to be the most common, contemporary mode of total knee arthroplasty failure. It has been suggested that the etiology of revision due to loosening can be attributed, in part, to joint imbalance and the variability inherent in standard surgical techniques. Due to the high prevalence of revision, the purpose of this study was to quantify the change in kinetic loading of the knee joint before versus after the application of the final cement-component complex. Ninety-two consecutive, cruciate-retaining TKAs were performed, between March 2014 and June 2014, by two collaborating surgeons. Two different knee systems were used, each with a different viscosity cement type (either medium viscosity or high viscosity). All knees were initially balanced using a microelectronic tibial insert, which provides real-time feedback of femoral contact points and joint kinetics. After the post-balance loads were captured, and the surgeon was satisfied with joint balance, the final components were cemented into place, and the sensor was re-inserted to capture any change in loading due to cementing technique.Introduction
Methods
The cement quantity and distribution within femoral hip resurfacings are important for implant survival. Too much cement could cause thermal bone necrosis during polymerisation. Insufficient cement and cement-implant interfacial gaps might favour mechanical loosening. Exposed cancellous bone within the implant, might facilitate debris-induced osteolysis. This study assessed the impact of the cementing technique on the cement mantle quality in hip resurfacing. We prepared 60 bovine condyles for a 46 mm ReCap (Biomet) resurfacing and cemented polymeric replicas of the original implant using five different techniques: low-viscosity cement filling half the implant with and without suction (LVF+/−S), medium-viscosity cement spread inside the implant (MVF), medium-viscosity cement packed on bone (Packing) and a combination of both last techniques (Comb.). Half the specimens had six anchoring holes. Specimens were CT-scanned and analyzed with validated segmentation software [1]. We assessed, with an analysis of covariance, the effect of the cementing technique (fixed factor), the presence of anchoring holes (fixed factor) and the bone density (covariate) on the cement mantle quality.INTRODUCTION
METHODS
The ‘cement reaction’ is a recognised cardio-respiratory response to methylmethacrylate bone cement, characterised by hypotension, reduced cardiac output, and on occasion fatal circulatory collapse. It is seen in 0.5-1% of cemented hip arthroplasties during the insertion and pressurisation of cement into the femur, and is believed to be secondary to marrow thromboembolism, the vasodilatory effect of methylmethacrylate, or a combination of the two. A number of steps, within the operating surgeon's control, can be undertaken to reduce the risk of the ‘cement reaction’ occurring. An e-mail based questionnaire was sent to all trainees and consultants in the West of Scotland containing eight questions relating to cementing technique when performing hemiarthroplasty of the hip. The questions related to measures to reduce the potential for ‘cement reaction’, e.g.: whether or not they routinely use a cement restrictor. Seventy-two complete replies were received. For five of the eight measures, the surgeons routinely employed the suggested practices. For the remaining three, the consensus opinion was contrary to the suggested practice for reduction of the risk of ‘cement reaction’. These were with respect to the surgical approach employed, whether or not to attempt to remove all cancellous bone from the proximal femur, and the use, or not, of a venting tube during cement insertion. In all three cases, the difference was statistically significant on chi-squared testing. The cohort of surgeons questioned routinely employ more than half of the methods suggested to reduce the potential for ‘cement reaction’ in hemiarthroplasty of the hip. Further surveys of why they do, or do not, undertake certain practices during cementing would help improve awareness of ‘cement reaction’, and perhaps reduce the incidence of this potentially fatal phenomenon.
Analyses of six different cementing techniques (cemtech) were performed using high viscosity (HVC) (Smart Set GHV, DePuy, Blackpool, England) and low viscosity cement (LVC) (Endurance, DePuy, Blackpool, England):
Manual application HVC ¼filling of the component with LVC and manual appl. ¼filling HVC and manual appl. ½filling LVC ½filling HVC Complete filling with LVC A force of 150N was used to press five shells in each cemtech group on foam specimens. During seating cement pressures and polymerization heat 5 mm under the foam surface were measured. Specimens were cut into quarters, surfaces were digitalized and cement penetration areas and depths were quantified using a pixel-analysis-software. The effects of the cemtech were examined by Kruscal-Wallis and Mann-Whitney-U-tests (two-sided, p-value<
0.05, SPSS)
Maximum temperatures were A) 36.0± 4.1°C, B) 45.0±5.7°C, C) 36.2±4.2°C, D) 53.5±2.5°C, E) 48.3±6.5°C and F) 53.2±12.6°C. D, E and F exceeded 50°C. A provided even cement penetration over the available fixation area without involvement of the internal area and the stem. Cemtech that used LVC cement (B, D and F) showed higher interior area cement contents than HVC (A, E and C). The cement content in the interior area was A) 39.3±26.4mm2, B) 72.1±16.9mm2, C) 37.7±10.5mm2, D) 99.0±24.6mm2, E) 67.5±15.6mm2 and F) 121.0±29.0mm2. A showed mainly complete seating with a cement mantle thickness of 0.5±0.7 mm. All other cemtech had incomplete seating in all specimens with significantly thicker polar cement mantles (p=0.032) up to a maximum of 4.6±1.2mm for E.
Hip resurfacing arthroplasty has gained popularity as an alternative for total hip arthroplasty. Usually, cemented fixation is used for the femoral component. However, each type of resurfacing design has its own recommended cementing technique. In a recent investigation the effect of various cementing techniques on cement mantle properties was studied. This study showed distinct differences in cement mantle volume, filling index and morphology. In this study, we investigated the effect of these cement mantle variations on the heat generation during polymerization, and its consequences in terms of thermal bone necrosis. Two FEA models of resurfacing reconstructions were created based on CT-data of Thermal analyses were performed of the polymerization process, simulating three different types of bone cement: Simplex P (Stryker), CMW3 (DePuy J&J) and Osteobond (Zimmer), with distinct differences in polymerization characteristics. The polymerization kinematics were based on data reported previously. During the polymerization simulations the cement and bone temperature were monitored. Based on the local temperature and time of exposure, the occurrence of thermal bone necrosis was predicted. The total volume of necrotic bone was calculated for each case.Introduction
Materials and methods
Aseptic loosening of the acetabular component is the major long-term complication of cemented total hip arthroplasty (THA). Failure of the acetabular cup occurs two to three times more frequently than failure of the femoral component. Third generation cementing techniques have improved the longevity of cemented components in THA. Although suction venting of the femoral shaft is a well-recognised practice, venting of the acetabulum during the cementing process has been little studied. This prospective study sets out to evaluate the effect of iliac wing vacuum aspiration on cement penetration of the acetabulum. Forty patients (Male 18, Female 22) aged 19–82 years (average 67+12 years) undergoing primary THA were entered consecutively into two study groups (20 hips per group). Reasons for THA included osteoarthritis (35) acetabular Dysplasia (2), rheumatoid arthritis (1), perthes (1) and conversion THA post dynamic screw (1)>
A single consultant surgeon performed all procedures in a standard operating room with laminar flow. A posterior approach was used in all hips. Third generation cementing techniques were used for acetabular component insertion. Twenty-six millimetres internal diameter Charnley ogee LPW polyethylene cups (Depuy) with varying external diameters [43 mm (9), 47 mm (24), 50 mm (5) and 53 mm (3)] were used and implanted with “Simplex” polymethylmethacrylate cement (Howmedica). Group 1 underwent acetabular cement pressurisation for sixty seconds prior to insertion of cup. Group 2 underwent pressurisation with simultaneous vacuum suction of the ipsilateral ilium using an Exeter iliac wing aspirator. Pre-and post-operative haemoglobin values were recorded for all patients. Standard post-operative radiographs were reviewed blindly to assess penetration of cement. A custom-made template facilitated measurement of depth (mm) of cement penetration in three areas corresponding with Delee-Charnley acetabular zones. Cement penetration was enhanced in all zones following iliac wing vacuum aspiration. The effect of venting was statistically significant (zone I 21.1+6.4mm v 12.8+2.8mm. zone II 7.0+2.4mm v 5.5+2.0mm, zone III 5.3+2.4mm v 4.2+1.4mm). The bone cement mantle interface was also completely obliterated following iliac wing aspiration.
To undertake a biomechanical study to determine the existence of any difference in the early tibial component fixation to bone, between two widely used techniques of cementation, which may confer an influence on implant survival. 20 tibial saw bones were prepared by standard methods using extramedullary instrumentation to receive a fixed bearingtibial component (PFC, DePuy). Under controlled laboratory conditions, thetibial trayswere implanted with CMW cement using either of the two following cementation techniques (10 implants in each group): Full cementation–application of cement to the undersurface of the tibial tray, the keel, the cut surface of the tibia and its stem hole. Surface cementation – application of cement only to the undersurface of thetibial tray and the cut surface of the tibia. 72 hours after implantation, the fixation of the cemented components was assessed by determining the load to failure under controlled tensile stresses (using an Instron Electro-mechanical tensile tester).Aim
Method
The purpose of this study is to compare using a novel cementing technique with hydroxyapatite granules at bone-cement interface with using the 3rd cementing technique on the acetabular component. Between 2005 and 2007, we performed 54 primary cemented THAs using the 3rd generation cementing technique with hydroxyapatite granules at bone-cement interface (Group A: 21 hips) or without them (Group B: 33 hips) in 49 patients with dysplastic hip (6 males, 43 female; mean age at operation, 67 years; age range, 48–84 years). Mean follow up was 5.3 years (range, 2.3–7.1 years), with none of the patients lost to follow up. According to Crowe's classification, subluxation was Group I in 31 hips, group II in 11 hips, group III in 8 hips, and group IV in 4 hips. We used Exeter flanged cup, Exeter stem with a 22-mm diameter metal head (Stryker, Benoist Girard, France) and Simplex-P bone cement (Stryker, Limerick, Ireland) in all hips. A posterolateral approach was performed for all patients. Bone graft was performed 25 hips (block bone graft: 11 hips; impaction bone grafting with a metal mesh: 13 hips) from autogeneic femoral head. Our 3rd cementing technique is to make multiple 6-mm anchor holes, to clean the the host acetabular bed with pulse lavage, to dry it with hydrogen peroxide and to use Exeter balloon pressurizer and Exeter flanged cup.Purpose
Patients and Methods
Femoral cement-in-cement revision is a well described technique to reduce morbidity and complications in hip revision surgery. Traditional techniques for septic revision necessitate removal of all bone cement from the femur. In our two institutions, we have been using a
The Exeter Trauma Stem (ETS) is a monoblock unipolar prosthesis currently in use throughout various orthopaedic departments. It can be a useful procedure for specialty trainees in developing
Purpose. Exeter stem was introduced to Japanese market at 1996. Since then, owing to its excellent clinical results, the number of the stem used has been increased year by year and more than 2000 stems have been implanted during the year 2009. The present study aims to prove its efficacy for Japanese patients by evaluating short term results of four major dedicated hip centers. Method. We present the short-term multi-center results of primary THA with Exeter stem combined with
Objectives. Previous studies have evidenced