Advertisement for orthosearch.org.uk
Results 1 - 20 of 609
Results per page:
Bone & Joint Research
Vol. 8, Issue 6 | Pages 275 - 287
1 Jun 2019
Clement ND Bardgett M Merrie K Furtado S Bowman R Langton DJ Deehan DJ Holland J

Objectives. Our primary aim was to describe migration of the Exeter stem with a 32 mm head on highly crosslinked polyethylene and whether this is influenced by age. Our secondary aims were to assess functional outcome, satisfaction, activity, and bone mineral density (BMD) according to age. Patients and Methods. A prospective cohort study was conducted. Patients were recruited into three age groups: less than 65 years (n = 65), 65 to 74 years (n = 68), and 75 years and older (n = 67). There were 200 patients enrolled in the study, of whom 115 were female and 85 were male, with a mean age of 69.9 years (sd 9.5, 42 to 92). They were assessed preoperatively, and at three, 12 and, 24 months postoperatively. Stem migration was assessed using Einzel-Bild-Röntgen-Analyse (EBRA). Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Harris Hip Score (HHS), Hip Disability and Osteoarthritis Outcome Score (HOOS), EuroQol-5 domains questionnaire (EQ-5D), short form-36 questionnaire (SF-36,) and patient satisfaction were used to assess outcome. The Lower Extremity Activity Scale (LEAS), Timed Up and Go (TUG) test, and activPAL monitor (energy expelled, time lying/standing/walking and step count) were used to assess activity. The BMD was assessed in Gruen and Charnley zones. Results. Mean varus/valgus tilt was -0.77⁰ and axial subsidence was -1.20 mm. No significant difference was observed between age groups (p ⩾ 0.07). There was no difference according to age group for postoperative WOMAC (p ⩾ 0.11), HHS (p ⩾ 0.06), HOOS (p ⩾ 0.46), EQ-5D (p ⩾ 0.38), patient satisfaction (p ⩾ 0.05), or activPAL (p ⩾ 0.06). Patients 75 years and older had a worse SF-36 physical function (p = 0.01) and physical role (p = 0.03), LEAS score (p < 0.001), a shorter TUG (p = 0.01), and a lower BMD in Charnley zone 1 (p = 0.02). Conclusion. Exeter stem migration is within normal limits and is not influenced by age group. Functional outcome, patient satisfaction, activity level, and periprosthetic BMD are similar across all age groups. Cite this article: N. D. Clement, M. Bardgett, K. Merrie, S. Furtado, R. Bowman, D. J. Langton, D. J. Deehan, J. Holland. Cemented Exeter total hip arthroplasty with a 32 mm head on highly crosslinked polyethylene: Does age influence functional outcome, satisfaction, activity, stem migration, and periprosthetic bone mineral density? Bone Joint Res 2019;8:275–287. DOI: 10.1302/2046-3758.86.BJR-2018-0300.R1


Bone & Joint Research
Vol. 8, Issue 12 | Pages 604 - 607
1 Dec 2019
Konan S Abdel MP Haddad FS

There is continued debate as to whether cemented or cementless implants should be utilized in particular cases based upon chronological age. This debate has been rekindled in the UK and other countries by directives mandating certain forms of acetabular and femoral component fixation based exclusively on the chronological age of the patient. This editorial focuses on the literature-based arguments to support the use of cementless total hip arthroplasty (THA), while addressing potential concerns surrounding safety and cost-effectiveness.

Cite this article: Bone Joint Res. 2019;8(12):604–607.


Full Access

We report the outcome of 320 primary Total Hip Arthroplasties (THA) with minimum 10-year follow-up (range 10–17 years, mean 12.6 years), performed by a single surgeon in Tauranga New Zealand, with the Exeter Contemporary Flanged all-polyethylene cup and Exeter femoral stem via a posterior approach. The aim of the study is to compare the results with the published results from the design centre and create a baseline cohort for further outcomes research in this centre. All patients were prospectively followed at 6 weeks, 1 year, 5 years, 10 years, (and 15 years when available). Of 333 cases that matched the inclusion criteria, 13 procedures in 12 patents were excluded because of concomitant bone grafting and/or supplementary cage fixation, leaving 320 primary THA procedures in 280 patients, including 26 bilateral procedures in 13 patients. Mean follow-up of the surviving cases was 12.6 (range 5.0-17.1) years. There were 12 revisions – 2 for fracture, 5 for instability, 1 for impingement pain and 4 for infection. There were no revisions for aseptic cup loosening. Kaplan-Meier survivorship with revision for aseptic loosening as the endpoint was 100% at 15.0 years (with minimum 40 cases remaining at risk). All-cause acetabular revision in 12 cases result in a Kaplan-Meier survival of 95.9% (95% CI: 93.5 to 98.3%). Cemented THA with the Exeter Contemporary Flanged cup and the Exeter stem is a durable combination with results that can be replicated outside of the design centre. The Exeter Contemporary Flanged cup has excellent survivorship at 15 years when used with the Exeter stem. Cemented THA with well-proven components should be considered the benchmark against which newer designs and materials should be compared


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_11 | Pages 23 - 23
1 Nov 2022
Jha A Jayaram J Carter J Siney P James J Hemmady M
Full Access

Abstract. Cemented total hip arthroplasty (THA) in the younger patient has historically been associated with higher wear and revision rates. We carried out a retrospective study of a prospectively collected database of patients at Wrightington hospital undergoing cemented THA under 55 years of age to determine acetabular wear and revision rates. Between August 2005 and December 2021 a cohort of 110 patients, 56 males and 54 females, underwent Cemented Total Hip Replacement through a posterior approach. Mean age at operation was 50yrs (35–55). The mean follow up was 6 years 9 months (0–16 years). 3 patients were lost to follow-up. Of the remaining 107 patients, Conventional and cross lined polyethylene were used in 54 and 53 patients respectively. Ceramic heads were used in 102 patients. 22.225mm and 28mm heads were used in 60 and 47 patients respectively. Clinical outcomes were assessed by Merle d'Aubigne and Postel scores which showed significant functional improvement. Linear wear was measured on plain radiographs using TRAUMA CAD and cup loosening was assessed by classification of Hodgkinson et al. No cases were revised during the observed follow up period. The mean wear rate in conventional and crosslinked polyethylene cups were 2.31mm (0.1–4.6) and 1.02mm (0.1–2.6) respectively. Cemented THA with both conventional and crosslinked polyethylene provides excellent survival rates in adults under the age of 55 years and crosslinked polyethylene may further improve these results due to improved wear rates


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 76 - 76
10 Feb 2023
Hooper G Gillespie W Maddumage S Snell D Williman J
Full Access

Our objective was to examine revision rates and patient reported outcome scores (PROMS) for cemented and uncemented primary total knee joint replacement (TKJR) at six months, one year and five years post-operatively. Patients and Methods: This matched cohort study involved secondary analyses of data collected as part of a large prospective observational study monitoring outcomes following knee replacement in Christchurch, New Zealand. Cemented and uncemented TKJR participants (n = 1526) were matched on age (± 5 years), sex and body mass index (BMI). From this larger sample, PROMS data, Oxford Knee Score and the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), out to five years post-operatively were analysed for a matched subset of participants (n = 252). The average age of participants was 67.9 years (SD 9.4, range 38-94). There were no differences between cemented and uncemented cohorts on the basis of age, sex, BMI or comorbidities, revision rates or PROMS outcomes. Cemented procedures had greater skin to skin times than uncemented procedures (p < 0.01). Unadjusted outcomes comparing risk for revision across the two participant cohorts did not significantly differ. Overall rates for revision were low (cemented 3.2% v uncemented 2.7%, p=0.70). Propensity adjusted associations between baseline characteristics (age, sex, BMI, comorbidity, baseline Oxford and baseline WOMAC scores) also revealed no differences in risk for revision at any post-operative timepoint. In this large multi-surgeon matched cohort study there were no significant differences in functional outcomes or revision rates, when outcomes following modern cemented and uncemented TKJR were compared out to 5-year follow up. Based on our findings, uncemented TKJR is predictable irrespective of patient's age, BMI or gender


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 16 - 16
23 Feb 2023
Tay M Bolam S Coleman B Munro J Monk A Hooper G Young S
Full Access

Source of the study: University of Auckland, Auckland, New Zealand. Unicompartmental knee arthroplasty (UKA) is effective for patients with isolated compartment osteoarthritis, however the procedure has higher revision rates. Long-term survivorship and accurate characterisation of revision reasons are limited by a lack of long-term data and standardised revision definitions. We aimed to identify survivorship, risk factors and revision reasons in a large UKA cohort with up to 20 years follow-up. Patient, implant and revision details were recorded through clinical and radiological review for 2,137 consecutive patients undergoing primary medial UKA across Auckland, Canterbury, Counties Manukau and Waitematā DHB between 2000 and 2017. Revision reasons were determined from review of clinical, laboratory, and radiological records for each patient using a standardised protocol. To ensure complete follow-up data was cross-referenced with the New Zealand Joint Registry to identify patients undergoing subsequent revision outside the hospitals. Implant survival, revision risk and revision reasons were analysed using Cox proportional-hazards and competing risk analyses. Implant survivorship at 15 years was comparable for cemented fixed-bearing (cemFB; 91%) and uncemented mobile-bearing (uncemMB; 91%), but lower for cemented mobile-bearing (cemMB; 80%) implants. There was higher incidence of aseptic loosening with cemented implants (3–4% vs. 0.4% uncemented, p<0.01), osteoarthritis (OA) progression with cemMB implants (9% vs. 3% cemFB/uncemMB; p<0.05) and bearing dislocations with uncemMB implants (3% vs. 2% cemMB, p=0.02). Compared with the oldest patients (≥75 years), there was a nearly two-fold increase in risk for those aged 55–64 (hazard ratio 1.9; confidence interval 1.1-3.3, p=0.03). No association was found with gender, BMI or ASA. Cemented mobile-bearing implants and younger age were linked to lower implant survivorship. These were associated with disease progression and bearing dislocations. The use of cemented fixed-bearing and uncemented mobile-bearing designs have superior comparable long-term survivorship


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_12 | Pages 72 - 72
1 Jul 2014
Dunbar M
Full Access

The initial success of modern total hip arthroplasty can in large part be attributed to the reliable fixation of the femoral component with the use of acrylic bone cement. Early success with cement led to a common pathway of development in North America and the European countries. Much of the early to mid-term research concentrated on refinement of variables related to the methodology and technique of cement fixation. Scandinavian registries were subsequently able to report on improved survivorship with better cementing technique. The net effect has been standardisation towards a small number of cemented implants with good long-term outcomes representing the majority of stems implanted in Sweden, for example. In North America, during the mid-term development of THA in the late 1980's, the term “cement disease” was coined and the cemented THA saw a precipitous decline in use, now to the point where many American orthopaedic residents are completing training never having seen a cemented THA. Modern uncemented femoral components can now claim good long-term survivorship, perhaps now comparable to cemented fixation. However, this has come at a cost with respect to the premium expense applied to the implant itself as well as lineage of failed uncemented constructs. The last several years have seen a proliferation of uncemented implants, usually at a premium cost, with no demonstrated improvement in survivorship. Osteolysis has not been solved with uncemented implants and cement disease has largely been recognised as a misnomer. Long-term outcomes of cemented femoral fixation have consistently demonstrated excellent survivorship, even in the younger age group. Cemented stems allow for variable positioning of the stem to allow for better soft tissue balancing, without the need for proximal modularity. Cemented stems are more forgiving and fail less often secondary to a reduced incidence of intra-operative complications, such as peri-prosthetic fracture. Cemented stems tend to be less expensive and also have the advantage of adding antimicrobial agents into the cement. This is important in emerging markets. The next iteration of orthopaedic innovation driven by the emerging markets may indeed be back to the future. Key Points: The initial success of total hip arthroplasty was based on cemented femoral fixation. Long-term outcomes in the United States demonstrate good results for cemented femoral fixation. Despite this, cemented fixation is not frequently used in the United States. Results from multiple national joint replacement registries demonstrate superior long-term performance of cemented femoral fixation. European countries, perhaps because of the excellent results in the national registries, use cemented femoral fixation more often than not. Cemented femoral fixation is cost neutral if not less expensive and allows for the addition of antimicrobials. Cemented femoral fixation is perhaps easier to perform as the component can be potted in a range of positions as opposed to the position being dictated by the femoral anatomy


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 17 - 17
23 Jun 2023
Schreurs BW van Veghel MH van der Koelen RE Hannink G Rijnen WH
Full Access

Although data on uncemented short stems are available, studies on cemented short-stemmed THAs are limited. These cemented short stems may have inferior long-term outcomes and higher femoral component fracture rates. Hence, we examined the long-term follow-up of cemented short Exeter stems used in primary THA. Within the Exeter stem range, 7 stems have a stem length of 125 mm or less. These stems are often used in small patients, in young patients with a narrow femoral canal or patients with anatomical abnormalities. Based on our local database, we included 394 consecutive cemented stems used in primary THA (n=333 patients) with a stem length ≤125 mm implanted in our tertiary referral center between 1993 and December 2021. We used the Dutch Arthroplasty Registry (LROI) to complete and cross-check the data. Kaplan-Meier survival analyses were performed to determine 20-year survival rates with stem revision for any reason, for septic loosening, for aseptic loosening and for femoral component fracture as endpoints. The proportion of male patients was 21% (n=83). Median age at surgery was 42 years (interquartile range: 30–55). The main indication for primary THA was childhood hip diseases (51%). The 20-year stem survival rate of the short stem was 85.4% (95% CI: 73.9–92.0) for revision for any reason and 96.2% (95%CI: 90.5–98.5) for revision for septic loosening. No stems were revised for aseptic femoral loosening. However, there were 4 stem fractures at 6.6, 11.6, 16.5 and 18.2 years of follow-up. The stem survival with femoral component fracture as endpoint was 92.7% (CI: 78.5–97.6) at 20 years. Cemented short Exeter stems in primary THA show acceptable survival rates at long-term follow-up. Although femoral component fracture is a rare complication of a cemented short Exeter stem, orthopaedic surgeons should be aware of its incidence and possible risk factors


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_8 | Pages 9 - 9
1 May 2014
Dunbar M
Full Access

The initial success of modern total hip arthroplasty can in large part be attributed to the reliable fixation of the femoral component with the use of acrylic bone cement. Early success with cement led to a common pathway of development in North America and the European countries. Much of the early- to mid-term research concentrated on refinement of variables related to the methodology and technique of cement fixation. Scandinavian registries were subsequently able to report on improved survivorship with better cementing technique. The net effect has been standardisation towards a small number of cemented implants with good long-term outcomes representing the majority of stems implanted in Sweden, for example. In North America, during the mid-term development of THA in the late 1980's, the term “cement disease” was coined and the cemented THA saw a precipitous decline in use, now to the point where many American orthopaedic residents are completing training never having seen a cemented THA. Modern uncemented femoral components can now claim good long-term survivorship, perhaps now comparable to cemented fixation. However, this has come at a cost with respect to the premium expense applied to the implant itself as well as lineage of failed uncemented constructs. The last several years have seen a proliferation of uncemented implants, usually at a premium cost, with no demonstrated improvement in survivorship. Osteolysis has not been solved with uncemented implants and cement disease has largely been recognised as a misnomer. Long-term outcomes of cemented femoral fixation have consistently demonstrated excellent survivorship, even in the younger age group. Cemented stems allow for variable positioning of the stem to allow for better soft tissue balancing, without the need for proximal modularity. Cemented stems are more forgiving and fail less often secondary to a reduced incidence of intraoperative complications, such as periprosthetic fracture. Cemented stems tend to be less expensive and also have the advantage of adding antimicrobial agents into the cement. This is important in emerging markets. The next iteration of orthopaedic innovation driven by the emerging markets may indeed be back to the future


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_9 | Pages 53 - 53
1 Oct 2020
Larson D Rosenberg J Lawlor M Garvin KL Hartman C Lyden E Konigsberg B
Full Access

Introduction. Revision total knee arthroplasty (TKA) is becoming increasingly common in the United States as the population ages and larger numbers of primary TKA are performed in younger individuals. Cemented or uncemented tibial stems are frequently used in revision cases. Decreased clinical outcomes and patient satisfaction have been described for revision TKA. This study aims to determine if the presence of overall pain and tibial pain at the end of the stem differs between cemented and uncemented tibial stems in revision TKA. Methods. This was a retrospective cohort study comparing patients who underwent revision TKA utilizing cemented or uncemented tibial stems in a 15-year period at a single institution with at least two-year follow-up. Exclusion criteria included age under 18, isolated revisions of the femoral component or polyethylene exchanges, lack of preoperative or postoperative imaging, insufficient operative or implant records available for electronic chart review, revision procedures performed at outside facilities, patients who were deceased at the time of survey administration, refusal to participate in the study, and failure to return the mailed survey or respond to a telephone follow-up questionnaire. Radiographic analysis included calculation of the percentage of the tibial canal filled with the implant, as well as measurement of the diameter of the tibial stem. Radiographs were also reviewed for evidence of cavitary defects, pedestal formation, radiolucent lines, and periprosthetic fractures. Mailed surveys addressing overall pain, tibial pain, and satisfaction were analyzed using Fisher's exact test and the independent sample t-test. Logistic regression was used to adjust for age, gender, and preoperative bone loss. Results. A total of 110 patients were included (63 cemented and 47 uncemented stems). No statistically significant differences in stem length, operative side, or indications for revision were found. The uncemented group had a significantly higher percent canal fill (p < 0.0001). Tibial pain at the end of the stem was present in 25.3% of cemented stems and 25.5% of uncemented stems (p = 1.00). There was a trend towards more overall pain in the uncemented cohort, but this did not reach statistical significance. Only 74.6% of cemented patients and 78.7% of uncemented patients were satisfied following revision TKA (p = 0.66). Conclusion. The data supports our hypothesis that there are no differences in end-of-stem pain or overall pain between cemented and uncemented tibial stems in revision TKA. High rates of dissatisfaction were noted in both cohorts postoperatively, consistent with previous literature. Patient factors likely play a large role in the presence of postoperative pain. These factors should be further evaluated in future studies in an effort to reduce pain and improve patient satisfaction


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 23 - 23
1 May 2019
Jobin C
Full Access

Durable humeral component fixation in shoulder arthroplasty is necessary to prevent painful aseptic loosening and resultant humeral bone loss. Causes of humeral component loosening include stem design and material, stem length and geometry, ingrowth vs. ongrowth surfaces, quality of bone available for fixation, glenoid polyethylene debris osteolysis, exclusion of articular particulate debris, joint stability, rotator cuff function, and patient activity levels. Fixation of the humeral component may be achieved by cement fixation either partial or complete and press-fit fixation. During the past two decades, uncemented humeral fixation has become more popular, especially with short stems and stemless press fit designs. Cemented humeral component fixation risks difficult and complicated revision surgery, stress shielding of the tuberosities and humeral shaft periprosthetic fractures at the junction of the stiff cemented stem and the remaining humeral shaft. Press fit fixation may minimise these cemented risks but has potential for stem loosening. A randomised clinical trial of 161 patients with cemented vs. press fit anatomic total shoulder replacements found that cemented fixation of the humeral component provided better quality of life, strength, and range of motion than uncemented fixation but longer operative times. Another study found increased humeral osteolysis (43%) associated with glenoid component loosening and polyethylene wear, while stress shielding was seen with well-fixed press fit humeral components. During reverse replacement the biomechanical forces are different on the humeral stem. Stem loosening during reverse replacement may have different factors than anatomic replacement. A systemic review of 41 reverse arthroplasty clinical studies compared the functional outcomes and complications of cemented and uncemented stems in approximately 1800 patients. There was no difference in the risk of stem loosening or revision between cemented and uncemented stems. Uncemented stems have at least equivalent clinical and radiographic outcomes compared with cemented stems during reverse shoulder arthroplasty. Durable humeral component fixation in shoulder arthroplasty is associated with fully cemented stems or well ingrown components that exclude potential synovial debris that may cause osteolysis


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_10 | Pages 10 - 10
1 Aug 2021
Jain S Lamb J Townsend O Scott C Kendrick B Middleton R Jones S Board T West R Pandit H
Full Access

Cemented total hip replacement (THR) provides excellent outcomes and is cost-effective. Polished taper-slip (PTS) stems demonstrate successful results and have overtaken traditional composite-beam (CB) stems. Recent reports indicate they are associated with a higher risk of postoperative periprosthetic femoral fracture (PFF) compared to CB stems. This study evaluates risk factors influencing fracture characteristics around PTS and CB cemented stems. Data were collected for 584 PFF patients admitted to eight UK centres from 25/05/2006-01/03/2020. Radiographs were assessed for Unified Classification System (UCS) grade and Arbeitsgemeinschaft für Osteosynthesefragen/Orthopaedic Trauma Association (AO/OTA) type. Statistical comparisons investigated relationships by age, gender, and stem fixation philosophy (PTS versus CB). The effect of multiple variables was estimated using multinomial logistic regression to estimate odds ratios (OR) with 95% confidence intervals (CI). Median (IQR) age was 79.1 (72.0–86.0) years, 312 (53.6%) patients were female, and 495 (85.1%) stems were PTS. The commonest UCS grade was type B1 (278, 47.6%). The commonest AO/OTA type was spiral (352, 60.3%). Metaphyseal-split fractures occurred only with PTS stems with an incidence of 10.1%. Male gender was associated with a five-fold reduction in odds of a type C fracture (OR 0.22, 95% CI 0.12 to 0.41, p<0.001) compared to a type B fracture. CB stems were associated with significantly increased odds of transverse fracture (OR 9.51, 95% CI 3.72 to 24.34, p <0.001) and wedge fracture (OR 3.72, 95% CI 1.16 to 11.95, p <0.05) compared to PTS stems. This is the largest study investigating PFF characteristics around cemented stems. The commonest fracture types are B1 and spiral fractures. PTS stems are exclusively associated with metaphyseal-split fractures, but their incidence is low. Males have lower odds of UCS grade C fractures compared to females. CB stems had higher odds of bending type fractures (transverse and wedge) compared to PTS stems. Biomechanical testing is needed for validation and investigation of modifiable factors which may reduce the risk of unstable fracture patterns requiring complex revision surgery over internal fixation


Cemented acetabular components commonly have a long posterior wall (LPW). Alternative components have a hooded or offset reorientating geometry, theoretically to reduce the risk of THR instability. We aimed to determine if cemented acetabular component geometry influences the risk of revision surgery for instability or loosening. The National Joint Registry for England, Wales and Northern Ireland (NJR) dataset was analysed for primary THAs performed between 2003 – 2017. A cohort of 224,874 cemented acetabular components were identified. The effect of acetabular component geometry on the risk of revision for instability or for loosening was investigated using binomial regression adjusting for age, gender, ASA grade, diagnosis, side, institution type, operating surgeon grade, surgical approach, polyethylene crosslinking and head size. A competing risk survival analysis was performed with the competing risks being revision for other indications or death. Among the cohort of subjects included, the distribution of acetabular component geometries was: LPW – 81.2%, hooded – 18.7% and offset reorientating – 0.1%. There were 3,313 (1.47%) revision THAs performed, of which 815 (0.36%) were for instability and 838 (0.37%) were for loosening. Compared to the LPW group, the adjusted subhazard ratio of revision for instability in the hooded group was 2.29 (p<0.001) and 4.12 (p=0.047) in the offset reorientating group. Likewise, the subhazard ratio of revision for loosening was 2.43 (p<0.001) in the hooded group and 11.47 (p<0.001) in the offset reorientating group. A time-varying subhazard ratio of revision for instability (hooded vs LPW) was found, being greatest within the first 6 months. This Registry based study confirms a significantly higher risk of revision THA for instability and for loosening when a cemented hooded or offset reorientating acetabular component is used, compared to an LPW component. Further research is required to clarify if certain patients benefit from the use of hooded or offset reorientating components, but we recommend caution when using such components in routine clinical practice


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_12 | Pages 29 - 29
1 Oct 2018
Lawrie CM Schwabe M Pierce A Barrack RL
Full Access

Introduction. Cemented total knee arthroplasty (TKA) remains the gold standard with survivorship above 90% at greater than 10 years postoperatively. However, with younger, heavier, more active patients undergoing TKA at an increasing rate, cementless implants have the appeal of potential for improved implant fixation longevity and decreased rates of aseptic loosening. The cementless implants are more expensive than their cemented counterparts such that implant costs may create a barrier to utilization. However, such comparisons fail to consider the unavoidable additional costs of cementing, including the cost of operating room time, cement and cementing accessories. The purpose of this study is to compare the actual cost of cemented and cementless TKA. Methods. The TKA cost calculation included the cost of operative time, implants, cement and cementing accessories. The difference in operative time between cemented and cementless TKA was determined from a previously published study of 100 TKAs performed using a cemented (55) or press fit (45) implant of the same design performed at a single institution by four fellowship trained arthroplasty surgeons. The decision to use cemented or cementless design in these patients was made based on patient bone quality intraoperatively. Operative time was compared between groups using a Student's two-tailed T-test. The cost of operating room time was based on estimates in the recent literature. The cost of cement and cementing accessories was estimated based on publically available market data. The cost of implants was estimated from institutional data for multiple companies. Results. The cost comparison between cemented and cementless total knee arthroplasty is summarized in Table 1. Mean operative time for cemented TKA was 14.3 minutes longer than for cementless TKA (94.7 + 15.2 vs. 80.4 + 15.7, p<0.01). The estimated cost of one minute of operating room time in the literature ranges from $30 to $60. For our analysis, we used an estimate of $36 per minute obtained from a recently published multi-center study. This resulted in an average operating room time cost $3406 for cemented and $2894 for cementless TKA. Antibiotic cement costs an average of $250 per bag and antibiotic-free cement costs an average of $75 per bag. Cement mixing techniques vary across surgeons. Approximately 95% use a vacuum system and 5% use a mixing bowl. The cost of vacuum systems ranges from $80 for an enclosed bowl to $125 for a vacuum system that can be directly connected to a cement gun. The cost of a plastic mixing bowl and spatula is $20. The cost of the disposables from a cement injection kit is $25. The average cost of a primary TKA implant, including femoral, tibial and polyethylene liner components, is $3530 for cemented and $4659 for cementless designs. Patellar resurfacing is not routinely used at our institution and therefore was not included in implant cost. Based on our calculations, the average cost of a cementless TKA is $7553. Using the cheapest cementing technique with 2 bags of plain cement and a manual mixing bowl with spatula, the cost of a cemented TKA $7114. Using the most expensive cementing technique with 2 bags of antibiotic cement and a cement gun compatible vacuum mixer, the cost of a cemented TKA is $7564. Conclusion. Cemented TKA remains the gold standard and still accounts for most procedures. Cementless TKA is increasing in utilization and may decrease the rate of aseptic loosening, especially in the rapidly growing young, active population undergoing TKA. Although cementless implants remain more expensive than cemented implants at most institutions, the actual overall cost of the two procedures is similar if operative time, cement and cementing accessories are considered. For any figures or tables, please contact authors directly


Background. The acknowledged benefit of the direct anterior (DA) approach is early functional return. Most surgeons in the U.S. use cementless femoral replacement given the negative track record of some cemented designs. However, delayed osseointegration of a femoral stem typically seen in older patients with poor bone quality will delay recovery, diminishing the benefits of the DA approach. Registry studies have shown a higher revision rate and complications in this patient population leading to a renewed interest in cemented fixation. Questions posed. To achieve the functional benefits of the DA approach and the fixation benefits of cemented replacement, this study combined the 2 techniques posing the following questions:1) Does the limited access of the DA approach adversely affect the cement technique? 2) Does such a cementing technique reduce the incidence of cementless complications?. Methods. A consecutive series of 341 patients (360 hips) receiving the DA approach between 2016–2018 were reviewed. There were 203 cementless stems and 157 cemented stems. Mean age was 75 in the cementless group and 76 in the cemented group, 70% females. Femoral complications were compared between the 2 groups using the T-test. Results. The cementless group had a higher rate of femoral complications (8 versus 0, P=0.011). There were 2 loose stems and 6 fractures, all requiring revision. Fractures occurred about 14.5 days and loosening about 10 months postoperatively. Conclusion. A higher rate of complications occurred with cementless stems. Cemented stems are protective in patients above 70 and can be safely done through the DA approach


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 82 - 82
1 May 2019
Lewallen D
Full Access

Total knee replacement (TKA) is one of the most successful procedures in orthopaedic surgery. Although originally limited to more elderly and less active individuals, the inclusion criteria for TKA have changed, with ever younger, more active and heavier patients receiving TKA. This broadening of indications coincided with the widespread adoption of modular cemented and cementless TKA systems in the 1980's, and soon thereafter wear debris related osteolysis and associated prosthetic loosening became major modes of failure for TKA implants of all designs. Initially, tibial components were cemented all polyethylene monoblock constructs. Subsequent long-term follow-up studies of some of these implant designs have demonstrated excellent durability in survivorship studies out to twenty years. While aseptic loosening of these all polyethylene tibial components was a leading cause of failure in these implants, major polyethylene wear-related osteolysis around well-fixed implants was rarely (if ever) observed. Cemented metal-backed nonmodular tibial components were first introduced to allow for improved tibial load distribution and protection of the underlying (often osteoporotic) bone. Eventually, modularity between the polyethylene tibial component and the metal-backed tray was introduced in the mid-80s mainly to facilitate screw fixation for cementless implants. These designs also provided intraoperative versatility by allowing interchange of various polyethylene thicknesses, and also aided the addition of stems and wedges. Modular vs. All Polyethylene Tibial Components in Primary TKA: Kremers et al. reviewed 10,601 adult (>18 years) patients with 14,524 condylar type primary TKA procedures performed at our institution between 1/1/1988 and 12/31/2005 and examined factors effecting outcome. The mean age was 68.7 years and 55% were female. Over an average 9 years follow-up, a total of 865 revisions, including 252 tibia revisions were performed, corresponding to overall survival of 89% (Confidence intervals (CI): 88%, 90%) at 15 years. In comparison to metal modular designs, risk of tibial revision was significantly lower with all polyethylene tibias (HR 0.3, 95% CI: 0.2, 0.5). With any revision as the endpoint, there were no significant differences across the 18 designs examined. Similarly, there were no significant differences across the 18 designs when we considered revisions for aseptic loosening, wear, osteolysis. Among patient characteristics, male gender, younger age, higher BMI were all significantly associated with higher risk of revisions (p<0.008). In a more recent review from our institution of over 11, 600 primary TKA procedures, Houdek et al. again showed that all polyethylene tibial components had superior survivorship vs. metal backed designs, with a lower risk of revision for loosening, osteolysis or component fracture. Furthermore, results for all polyethylene designs were better for all BMI subgroups except for those <25 BMI where there was no difference. All polyethylene results were also better for all age groups except for those under age <55 where there again was no difference. Finally, in a recently published meta-analysis of 28 articles containing data on 95,847 primary TKA procedures, all polyethylene tibial components were associated with a lower risk of revision and adverse outcomes. The available current data support the use of all polyethylene tibial designs in TKA in all patients regardless of age and BMI. In all patients, (not just older individuals) use of an all polyethylene tibial component is an attractive and more cost effective alternative, and is associated with the better survivorship and lower risk of revision than seen with modular metal backed tibial components


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_12 | Pages 37 - 37
1 Nov 2015
Kazi H Whitehouse S Timperley A
Full Access

Introduction. Cemented stems have given good results with no difference in outcome when comparing taper slip and composite beam designs in short-term randomised trials. We aimed to ascertain differences in outcome between the different cemented design philosophies using a large-scale registry analysis. Materials and Methods. A retrospective cohort study of National Joint Registry of England and Wales (NJREW) was conducted. The study population included all primary total hip operations performed in the UK from 1 April 2003 to 31 September 2012. All cemented stems were identified and categorised as taper slip (polished) or composite beam (non-polished). Results. Non-polished stems accounted for 16.6% of all primary cemented hip replacements with polished stems making up the remainder. Mean age for non-polished stems was 73.0 years and 71.8 for the polished group (p<0.001) suggesting selection bias. There was a statistically significant increased chance of revision in the non-polished group compared with the polished group (p<0.001). Reasons for revision by fixation type:. Reason for revision. Total. Polished n=253667. Non-polished n=50661. N. %. n. %. Aseptic loosening stem. 532. 300. 0.12. 232. 0.46. Infection. 965. 735. 0.29. 230. 0.45. Stem lysis. 149. 99. 0.04. 50. 0.10. Cup lysis. 156. 125. 0.05. 31. 0.06. Malalignment stem. 114. 86. 0.03. 28. 0.06. The risk of aseptic loosening, stem lysis, malalignment and infection were several magnitudes higher for non-polished stems than for polished varieties (p<0.05). Discussion. Theoretical concerns are reflected in clinical practice with an increased incidence of revision for non-polished stems for all indications recorded. Conclusions. Incidence of revision is higher in cemented non-polished stems compared with polished designs


Bone & Joint Open
Vol. 4, Issue 9 | Pages 659 - 667
1 Sep 2023
Nasser AAHH Osman K Chauhan GS Prakash R Handford C Nandra RS Mahmood A

Aims

Periprosthetic fractures (PPFs) following hip arthroplasty are complex injuries. This study evaluates patient demographic characteristics, management, outcomes, and risk factors associated with PPF subtypes over a decade.

Methods

Using a multicentre collaborative study design, independent of registry data, we identified adults from 29 centres with PPFs around the hip between January 2010 and December 2019. Radiographs were assessed for the Unified Classification System (UCS) grade. Patient and injury characteristics, management, and outcomes were compared between UCS grades. A multinomial logistic regression was performed to estimate relative risk ratios (RRR) of variables on UCS grade.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_17 | Pages 95 - 95
1 Nov 2016
Gehrke T
Full Access

Femoral revision in cemented THA might include some technical difficulties, based on loss of bone stock and cement removal, which might lead to further loss of bone stock, inadequate fixation, cortical perforation or consequent fractures. Cemented THA has become an extremely successful operation with excellent long-term results. Although showing decreasing popularity in North America, it always remained a popular choice for the elderly patients in Europe and other parts of the world. Various older and recent studies presented excellent long-term results, for cemented fixation of the cup as well as the stem. Besides optimal component orientation, a proper cementing technique is of major importance to assure longevity of implant fixation. Consequently a meticulous bone bed preparation assures the mechanical interlock between the implant component, cement and the final bone bed. Pre-operative steps as proper implant sizing/ templating, ensuring an adequate cement mantle thickness, and hypotensive anaesthesia, minimizing bleeding at the bone cement interface, are of major importance. Additionally, femoral impaction grafting, in combination with a primary cemented stem, allows for femoral bone restoration due to incorporation and remodeling of the allograft bone by the host skeleton. Historically, it has been first performed and described in Exeter in 1987, utilizing a cemented tapered polished stem in combination with morselised fresh frozen bone grafts. The technique was refined by the development of designated instruments, which have been implemented by the Nijmegen group from Holland. Indications might include all femoral revisions with bone stock loss, while the Endo-Clinic experience is mainly based on revision of cemented stems. Cavitary bone defects affecting meta- and diaphysis leading to a wide or so called “drain pipe” femora, are optimal indications for this technique, especially in young patients. Contraindications are mainly: septical revisions, extensive circumferential cortical bone loss and noncompliance of the patient. The cement mantle is of importance, as it acts as the distributor of force between the stem and bone graft and seals the stem. A cement mantle of at least 2 mm has shown favorable results. Originally the technique is described with a polished stem. We use standard brushed stems with comparable results. Relevant complications include mainly femoral fractures due to the hardly impacted allograft bone. Subsidence of tapered polished implants might be related to cold flow within the cement mantle, however, could also be related to micro cement mantle fractures, leading to early failure. Subsidence should be less than 5 mm. Impaction grafting might technically be more challenging and more time consuming than cement-free distal fixation techniques. It, however, enables a reliable restoration of bone stock which might especially become important in further revision scenarios in younger patients


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 9 - 9
1 Feb 2015
Gehrke T
Full Access

Cemented total hip arthroplasty (THA) has become an extremely successful operation with excellent long-term results. Although showing decreasing popularity in North America, it always remained a popular choice for the elderly patients in Europe and other parts of the world. Various older and recent studies presented excellent long-term results, for cemented fixation of the cup as well as the stem. Besides optimal component orientation, a proper cementing technique is of major importance to assure longevity of implant fixation. Consequently a meticulous bone bed preparation assures the mechanical interlock between the implant component, cement and the final bone bed. Preoperative steps as proper implant sizing/ templating, ensuring an adequate cement mantle thickness, and hypotensive anesthesia, minimising bleeding at the bone cement interface, are of major importance. First the fossa pyriformis should be clearly identified, including the posterolateral entry point of the prosthesis. The femoral neck cut is usually 1.5cm to 2cm above the minor trochanter, based on the preoperative planning and implant type. Opening of the canal is done with an awl or osteotome, followed by any blunt tipped instrument, to follow the intramedullary direction. A box osteotome opens the lateral portion of the femoral neck, gently to preserve as much cancellous bone as possible. Sequential broaching follows carefully and according to the planning, to ensure preservation of 2mm to 3mm cancellous bone for interdigitation. Some systems might require over-broaching by one size. Trialing is done with the broach. Following, irrigation using a long nozzle pulsatile lavage, reduces the chance for fat embolism. A cement restrictor is then placed 1.5cm to 2cm distal to the tip of the stem, to ensure an adequate cement mantle distally. A second complete pulsatile irrigation of the canal follows, to minimise bleeding, followed by a dry sponge. Cement mixing is vacuum based in the meantime, usually 60–80g. We prefer the use of low dose antibiotic laden cement in our set up. Two to three minutes after mixing, the cement is applied rapidly in a retrograde technique, with a cement gun placing the nozzle tip against the cement restrictor. The gun is “pushed” out during the application, rather than being withdrawn from the canal. Proximal pressurization is first done by thumb, then with a proximal seal for 1 minute. The stem is inserted slowly using steady manual pressure, in the center of the cement mantle, however should never be impacted. The stem is aligned with the previously defined lateral entry point and is held in position until the cement hardens. The desired outcome is a cement interdigitation into cancellous bone for 2mm to 3mm and an additional mantle of 2mm pure cement