During the last decades, several research groups have used bisphosphonates for local application to counteract secondary bone resorption after bone grafting, to improve implant fixation or to control bone resorption caused by bone morphogenetic proteins (BMPs). We focused on zoledronate (a bisphosphonate) due to its greater antiresorptive potential over other bisphosphonates. Recently, it has become obvious that the carrier is of importance to modulate the concentration and elution profile of the zoledronic acid locally. Incorporating one fifth of the recommended systemic dose of zoledronate with different apatite matrices and types of bone defects has been shown to enhance bone regeneration significantly in vivo. We expect the local delivery of zoledronate to overcome the limitations and side effects associated with systemic usage; however, we need to know more about the bioavailability and the biological effects. The local use of BMP-2 and zoledronate as a combination has a proven additional effect on bone regeneration. This review focuses primarily on the local use of zoledronate alone, or in combination with bone anabolic factors, in various preclinical models mimicking different orthopaedic conditions. Cite this article: I. Qayoom, D. B. Raina, A. Širka, Š. Tarasevičius, M. Tägil, A. Kumar, L. Lidgren. Anabolic and antiresorptive actions of locally delivered bisphosphonates for
Current strategies for
Abstract. 3D printing of synthetic scaffolds mimicking natural bone chemical composition, structure, and mechanical properties is a promising approach for repairing bone injuries. Direct ink writing (DIW), a type of 3D printing, confers compatibility with a wide range of materials without exposing these materials to extreme heat. Optimizing ink properties such as filament formation capabilities, shear-thinning, and high storage modulus recovery would improve DIW fabrication characteristics. In this study, composite inks based on biodegradable polycaprolactone (PCL), reinforced with nano-hydroxyapatite (HAp), and loaded with vancomycin were designed and evaluated for their rheological properties, wettability, mechanical properties, and antimicrobial properties. The formulated composite inks displayed a shear-thinning behaviour exhibited storage modulus recovery percentages above 80% for all formulations, which is essential for extrusion deposition by DIW at room temperature. Ink formulations were able to form fully interconnected lattice scaffolds with porosities ranging from 42% to 65%. Increasing the HAp concentrations from 55% to 85% w/w increased the shear thinning behaviour and reduced the printed filament width to more closely match the nozzle diameter; this indicates higher HAp proportion reduces ink shrinkage. The scaffold had high wettability at HAp proportions above 65% w/w and the compressive elastic modulus of DIW printed scaffolds exhibited within the range of trabecular bone. Antimicrobial activity was apparent from the agar diffusion assay; zones of inhibition ranging from 15.82 ± 0.25 mm and 20.06 ± 0.25 mm were observed after 24 hr for composite scaffolds loaded with 3% and 9% w/w vancomycin respectively. Vancomycin-loaded PCL/HAp composite inks were developed, displaying good printability, wettability, mechanical properties, and antimicrobial properties, making them an attractive choice for
Tissue regeneration using growth factors has disadvantages while needing to use supraphysiological growth factor concentrations. Gene therapy has been proposed as alternative. Unfortunately, drawbacks such as the use of viruses and the inefficiency of non-viral systems jeopardize clinical translation. mRNA-based transcript therapy is a novel approach that may solve plasmid DNA-based gene therapy limitations. mRNA molecules can be chemically modified in order to improve stability and immunogenicity. Chemically modified mRNA (cmRNA) is much more efficient than pDNA in delivering genes into the cell. The combination of biomaterials with cmRNA is interesting for the tissue engineering and regenerative medicine field. The resulting construct, known as Transcript-Activated Matrix, may act as a cmRNA delivery platform while supporting cell proliferation, extracellular matrix deposition and ultimately de novo tissue formation. Our work and the work of others demonstrated that the use of Transcript-Activated Matrix prolonged transgene expression and enhanced protein translation. This presentation will provide an overview of ongoing research from our group on cmRNA for improving
Accidents, osteoporosis or cancer can cause severe bone damage requiring grafts to heal. All current grafting methods have disadvantages including scarcity and infection/rejection risks. An alternative is therefore needed. Hydroxyapatite/calcium carbonate (HA/CC) scaffolds mimic the mineral bone composition but lack growth factors present in auto- and allografts, limiting their osteoinductive capacity. We hypothesize that this will increase the osteogenicity and osteoinductivity of scaffolds through the presence of growth factors. The objectives of this study are to develop and mass-produce grafts with enhanced osteoinductive capacity. HA/CC scaffolds were cultured together with umbilical cord mesenchymal stem cells in bioreactors so that they adhere to the surface and deposit growth factors. Cells growing on the scaffolds are confirmed by Alamar blue assays, SEM, and confocal microscopy. ELISA and IHC are used to assess the growth factor content of the finished product. It has been confirmed that cells attach to the scaffolds and proliferate over time when grown in bioreactors. Dynamic seeding of cells is clearly advantageous for cell deposits, equalizing the amount of cells on each scaffold granule. Hydroxyapatite/calcium carbonate scaffolds support cell-growth. This should be confirmed by further research, including Quantification of BMPs and other indicators of osteogenic differentiation such as Runx2, osteocalcin and ALP is pending, and amounts are expected to be increased in enhanced scaffolds and in-vivo implantation.
Minimally invasive surgery for the restoration of bone tissues lost due to diseases and trauma is preferred by the health care system as the related costs are continuously increasing. Recently, efforts have been paid to optimize injectable calcium phosphate (CaP) cements which have been recognized as excellent alloplastic material for osseous augmentation because of their unique combination of osteoconductivity, biocompatibility and mouldability. The sol-gel synthesis approach appears to be the most suitable route towards performing injectable calcium phosphates. Different strategies used to prepare bioactive and osteoinductive injectable CaP are reported. CaP gels complexed with phosphoserine-tethered poly(ε-lysine) dendrons (G3-K PS) designed to interact with the ceramic phase and able to induce osteogenic differentiation of human mesenchymal stem cells (hMSCs) is discussed. Recently, attention has been given to the modification of hydroxyapatite with Strontium (Sr) due to its dual mode of action, simultaneously increasing bone formation (stimulating osteoblast differentiation) while decreasing bone resorption (inhibiting osteoclast differentiation). The effect of systems based on strontium modified hydroxyapatite (Sr-HA) at different composition on proliferation and osteogenic differentiation of hMSC is described. One more approach is based on the use of antimicrobial injectable materials. It has been demonstrated that some imidazolium, pyridinium and quaternary ammonium ionic liquids (IL) have antimicrobial activity against some different clinically significant bacterial and fungal pathogens. Here, we report several systems based on IL at different alkyl-chain length incorporated in Hydroxyapatite (HA) through the sol-gel process to obtain an injectable material with simultaneous opposite responses toward osteoblasts and microbial proliferation.
Material-based strategies seek to engineer synthetic microenvironments that mimic the characteristics of physiological extracellular matrices for applications in regenerative therapies, including
Autogenous bone grafting limitations have motivated the development of Tissue-Engineered (TE) biomaterials that offer an alternative as bone void fillers. However, the lack of a blood supply within implanted constructs may result in avascular necrosis and construct failure. 1. The aim of this project was to investigate the potential of novel TE constructs to promote vascularisation and
Mesenchymal Stromal Cells (MSC) are promising therapies for fracture healing. However, undifferentiated MSC may act only through an inductive paracrine effect without direct bone formation. Here, we developed an injectable product constituted of human bone-forming cells derived from bone marrow (BM)-MSC (ALLO-P2) that display more potent
During the last decades numerous studies have reported the critical impact of physical activity on
The human amniotic membrane (hAM), derived from the placenta, possesses a low (nay inexistant) immunogenicity and exerts an anti-inflammatory, anti-fibrotic, antimicrobial, antiviral and analgesic effect. It is a source of stem cells and growth factors promoting tissue regeneration. hAM acts as an anatomical barrier with adequate mechanical properties (permeability, stability, elasticity, flexibility, resorbability) preventing the proliferation of fibrous tissue and promoting early neovascularization of the surgical site. Cryopreservation and lyophilization, with sometimes additional decellularization process, are the main preservation methods for hAM storage. We examined the use of hAM in orthopaedic and maxillofacial bone surgery, specially to shorten the induced membrane technique (Gindraux, 2017). We investigated the cell survival in cryopreserved hAM (Laurent, 2014) and the capacity of intact hAM of in vitro osteodifferentiation (Gualdi, 2019). We explored its in vivo osteogenic potential in an ectopic model (Laurent, 2017) and, with Inserm U1026 BioTis, in a calvarial defect (Fenelon, 2018). Still piloted by U1026, decellularization and/or lyophilization process were developed (Fenelon, 2019) and, processed hAM capacities was assessed for guided bone regeneration (Fenelon 2020) and induced membrane technique (Fenelon, 2021) in mice. We reported a limited function of hAM for bone defect management. In this light, we recognized medication-related osteonecrosis of the jaw (MRONJ) as appropriate model of disease to evaluate hAM impact on both oral mucosa and bone healing. We treated height compassionate patients (stage II, III) with cryopreserved hAM. A multicentric randomized clinical study (PHRC-I 2020 funding) will be soon conducted in France (regulatory and ethical authorization in progress).
Bone remodelling is mediated through the synchronism of bone resorption (catabolism) by osteoclasts and bone formation (anabolism) by osteoblasts. Imbalances in the bone remodelling cycle represent an underling cause of metabolic bone diseases such as osteoporosis, where bone resorption exceeds formation (1). Current therapeutic strategies to repair osteoporotic bone fractures focus solely in targeting anabolism or supressing catabolism (2). However, these therapeutics do not reverse the structural damage present at the defect site, ultimately leading to impaired fracture healing, making the repair of osteoporotic fractures particularly challenging in orthopaedics. Herein, we focus on investigating a combined versatile pro-anabolic and anti-catabolic effect of Magnesium (Mg2+) to modulate bone cell behaviour (3), to develop an engineered biomimetic bio-instructive biomaterial scaffold structurally designed to enhance bone formation while impeding pathological osteoclast resorption activities to facilitate better bone healing and promote repair. Pre-osteoblasts MC3T3-E1 (OBs) and osteoclasts progenitors RAW 264.7 (OCs) cell lines were cultured in growth media exposed to increasing concentrations of MgCl2 (0, 0.5, 1, 10, 25 and 50mM) and the optimal concentration to concurrently promote the differentiation of OBs and inhibit the differentiation or funtion of RANKL-induced OCs was assessed. We next used Fluorescence Lifetime Imaging Microscopy to investigate changes in the metabolic pathways during OBs and OCs differentiation when exposed to increasing MgCl2 concentrations. We developed a range of magnesium-incorporated collagen scaffolds to permit the spatiotemporal release of Mg2+ within the established therapeutic window, and to investigate the behaviour of bone cells in a 3D environment. In our results, we reported an increase in the expression of the bone formation markers osteocalcin and osteopontin for OBs exposed to 10mM MgCl2, and a significant downregulation of the osteoclast-specific markers TRAP and cathepsin K in RANKL-induced OCs differentiation when exposed to 25mM MgCl2. Moreover, 25mM MgCl2 induced changes in the energy metabolism of OCs from a predominantly oxidative phosphorylation towards a more glycolytic pathway suggesting a regulatory effect of Mg2+ in the underlying mechanisms of osteoclasts formation and function. The developed porous collagen-magnesium scaffolds significantly reduced the expression of early osteoclastogenic markers RANK and NFkB, and an elevated expression of the osteogenic markers Runx2 and Col1A1 was reported after 7 days. Our research to date has provided evidences to demonstrate the potential of Mg2+ to concurrently enhance osteogenesis while inhibiting osteoclastogenesis
Robust repair relies on blood flow. This vascularization is the major challenge faced by tissue engineering on the path to forming thick, implantable constructs. Without this vasculature, oxygen and nutrients cannot reach the cells located far from host blood vessels. To make viable constructs, tissue engineering takes advantage of the mechanical properties of synthetic materials, while combining them with extracellular matrix proteins to create a natural environment for the tissue- specific cells. Tropoelastin, the precursor of the elastin, is the extracellular matrix protein responsible for elasticity in diverse tissues, including robust blood vessels. We find that tropoelastin contributes a physical role in elasticity and also substantially to the biology of repairing tissue. The emerging model from a range of our in vivo studies is that tropoelastin encodes direct biological effects and has the versatility to promote repair. We have discovered that tropoelastin substantially improves healing by halving the time to
The osteoclastogenesis is regulated by a complex signaling system between the pro-apoptotic factors (Bax-Cyclin E2-Cdk2) and the tumor necrosis factor family (RANKL-RANK-OPG). Extracorporeal Shock Waves Therapy (ESWT) have recently been used in orthopaedic treatments to induce
Aims: Extracorporeal Shock Waves Therapy (ESWT) has recently been used in orthopaedic treatments to induce
The course of secondary fracture healing typically consists of four major phases including inflammation, soft and hard callus formation, and bone remodeling. Callus formation is promoted by mechanical stimulation, yet little is known about the healing tissue response to strain stimuli over shorter timeframes on hourly and daily basis. The aim of this study was to explore the hourly, daily and weekly variations in bone healing progression and to analyze the short-term response of the repair tissue to well-controlled mechanical stimulation. A system for continuous monitoring of fracture healing was designed for implantation in sheep tibia. The experimental model was adapted from Tufekci et al. 2018 and consisted of 3 mm transverse osteotomy and 30 mm bone defect resulting in an intermediate mobile bone fragment in the tibial shaft. Whereas the distal and proximal parts of the tibia were fixed with external fixator, the mobile fragment was connected to the proximal part via a second, active fixator. A linear actuator embedded in the active fixator moved the mobile fragment axially, thus stimulating mechanically the tissue in the osteotomy gap via well-controlled displacement being independent from the sheep's functional weightbearing. A load sensor was integrated in the active fixation to measure the force acting in the osteotomy gap. During each stimulation cycle the displacement and force magnitudes were recorded to determine in vivo fracture stiffness. Following approval of the local ethics committee, experiments were conducted on four skeletally mature sheep. Starting from the first day after surgery, the daily stimulation protocols consisted of 1000 loading events equally distributed over 12 hours from 9:00 to 21:00 resulting in a single loading event every 44 seconds. No stimulation was performed overnight. One animal had to be excluded due to inconsistencies in the load sensor data. The onset of tissue stiffening was detected around the eleventh day post-op. However, on a daily basis, the stiffness was not steadily increasing, but instead, an abrupt drop was observed in the beginning of the daily stimulations. Following this initial drop, the stiffness increased until the last stimulation cycle of the day. The continuous measurements enabled resolving the tissue response to strain stimuli over hours and days. The presented data contributes to the understanding of the influence of patient activity on daily variations in tissue stiffness and can serve to optimize rehabilitation protocols post fractures.
Introduction. P-15 (GTPGPQGIAGQRGVV), a fifteen residue synthetic peptide, is a structural analogue of the cell binding domain of Type 1 collagen and creates a biomimetic environment for
Advances in our understanding of skeletal stem cells and their role in bone development and repair, offer the potential to open new frontiers in bone regeneration. However, the ability to harness these cells to replace or restore the function of traumatised or lost skeletal tissue as a consequence of age or disease remains a significant challenge. We have developed protocols for the isolation, expansion and translational application of skeletal cell populations with cues from developmental biology informed by
The role of mesenchymal stem cells (MSCs) in enhancing healing process has been examined with allogeneic and xenogeneic cells in transplantation models. However, certain factors might limit the use of allogeneic cells in clinical practice, (e.g. disease transmission, ethical issues and patient acceptance). Adipose tissue represents an abundant source for autologous cells. The aim of this study was to evaluate adipose-derived autologous cells for preventing non-union. Adults male Wistar rats (n=5) underwent a previously published surgical procedure known to result in non-union if no treatment is given. This consisted of a mid-shaft tibial osteotomy with peri/endosteal stripping stabilised by intramedullary nail fixation with a 1mm gap maintained by a spacer. During the same operation, ipsilateral inguinal subcutaneous fat was harvested and processed for cell isolation. After three weeks in culture, the cell number reached 5×106 and were injected into the fracture site. At the end of the experiment, all tibias (injected with autologous fat-MSCs) developed union. These were compared with a control group injected with PBS (n=4) and with allogenic (n=5) and xenogeneic (n=6) cell transplantation groups. The amount of callus was noticeably large in the autologous cell group and the distal-callus index was significantly greater than that of the other groups, P-value =<0.05, unpaired t-test, corrected by Benjamini & Hochberg. We report a novel method for autologous MSCs implantation to stimulate fracture healing. Local injection of autologous fat-MSCs into the fracture site resulted in a solid union in all the tibias with statistically significantly greater amounts of callus.
We have used human Embryonic Stem cells (hESC) and human Mesenchymal Stem Cells (hMSC) in rat models of