Advertisement for orthosearch.org.uk
Results 1 - 12 of 12
Results per page:
Bone & Joint Research
Vol. 12, Issue 10 | Pages 644 - 653
10 Oct 2023
Hinz N Butscheidt S Jandl NM Rohde H Keller J Beil FT Hubert J Rolvien T

Aims. The management of periprosthetic joint infection (PJI) remains a major challenge in orthopaedic surgery. In this study, we aimed to characterize the local bone microstructure and metabolism in a clinical cohort of patients with chronic PJI. Methods. Periprosthetic femoral trabecular bone specimens were obtained from patients suffering from chronic PJI of the hip and knee (n = 20). Microbiological analysis was performed on preoperative joint aspirates and tissue specimens obtained during revision surgery. Microstructural and cellular bone parameters were analyzed in bone specimens by histomorphometry on undecalcified sections complemented by tartrate-resistant acid phosphatase immunohistochemistry. Data were compared with control specimens obtained during primary arthroplasty (n = 20) and aseptic revision (n = 20). Results. PJI specimens exhibited a higher bone volume, thickened trabeculae, and increased osteoid parameters compared to both control groups, suggesting an accelerated bone turnover with sclerotic microstructure. On the cellular level, osteoblast and osteoclast parameters were markedly increased in the PJI cohort. Furthermore, a positive association between serum (CRP) but not synovial (white blood cell (WBC) count) inflammatory markers and osteoclast indices could be detected. Comparison between different pathogens revealed increased osteoclastic bone resorption parameters without a concomitant increase in osteoblasts in bone specimens from patients with Staphylococcus aureus infection, compared to those with detection of Staphylococcus epidermidis and Cutibacterium spp. Conclusion. This study provides insights into the local bone metabolism in chronic PJI, demonstrating osteosclerosis with high bone turnover. The fact that Staphylococcus aureus was associated with distinctly increased osteoclast indices strongly suggests early surgical treatment to prevent periprosthetic bone alterations. Cite this article: Bone Joint Res 2023;12(10):644–653


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 61 - 61
1 Nov 2018
Reifenrath J Schröder ML Fedeeva E Calliess T Angrisani N
Full Access

Implant infection is an increasing problem in orthopedic surgery, especially due to progressive antibiotic resistance and an aging population with rising numbers of implantations. As a consequence, new strategies for infection prevention are necessary. In the previous study it was hypothesized that laser-structured implant surfaces favor cellular adhesion while hindering bacterial ongrowth and therewith contribute to reduce implant infections. Cuboid titanium implants (0.8 × 0.8 × 12 mm. 3. , n=34) were used. Seventeen were laser-structured by ultra-short pulsed laser ablation to create a spike structure; the others were polished and served as controls. In general anesthesia, implants were inserted in rat tibiae and infected with a S. aureus suspension. During a 21 day postoperative follow-up, daily clinical control was performed. Radiographs were taken at day 14 and day 21. After euthanasia, bacterial load and biofilm formation on the implant surface was evaluated semi quantitatively by confocal laser scanning microscopy and computational acquisition of bacteria and cells by Imaris®-software. Additionally, histology of the surrounding bone was performed. Clinically, no differences were observed between the groups. However, contrary to our hypothesis, bacterial load was increased in the laser-structured implant group although cellular adhesion was even more pronounced. Radiographical and histological evaluations showed increased bone alterations in the group with laser-structured implants compared to the control group. These findings did not confirm prior in vitro studies, where a reduction of bacterial load was found for similar surfaces and demonstrate the necessity of in vivo trials prior to the clinical use of new materials


Little is known on how sensory nerves and osteoclasts affect degenerative processes in subchondral bone in osteoarthritis (OA). Substance P (SP) effects on bone are ambivalent but physiological levels are critical for proper bone quality whereas α-calcitonin gene-related peptide (αCGRP) has anabolic effects. Here, we aimed to analyse the influence of an altered sensory neuropeptide microenvironment on subchondral bone in murine OA. Transection of the medial meniscotibial ligament (DMM) of the right hind leg induced joint instability leading to development of OA. Subchondral bone of tibiae from wildtype (WT), alendronate-treated WT (ALN, osteoclast inhibition), αCGRP- and SP- (Tachykinin (Tac)1) knockout mice was analysed by micro-computed tomography 4 and 12 weeks after DMM or sham surgery. Bone resorption marker CTX-I was measured in serum. We observed osteophytosis in all DMM groups and ALN sham mice 4 weeks after surgery but also in sham groups 12 weeks after surgery. In subchondral bone, bone volume density (BV/TV) increased from 4 to 12 weeks after surgery in DMM WT and Tac1-/− mice. DMM WT mice additionally had increased trabecular numbers (Tb.N.) and decreased trabecular space (Tb.Sp.) over time. Sham mice also showed time-dependent alterations in subchondral bone. In sham WT and αCGRP-/− mice specific bone surface (BS/BV) decreased and trabecular thickness (Tb.Th.) increased from 4 to 12 weeks after surgery while subchondral BV/TV of αCGRP-/− mice increased. Comparison of subchondral bone parameters at each time point showed elevated BV/TV in ALN DMM compared to WT DMM mice 4 weeks after surgery. In addition, both ALN sham and DMM mice showed a reduced BS/BV compared to WT. 4 weeks after sham surgery Tb.Th. was highest in ALN mice. In DMM WT mice Tb.Sp. was higher compared to ALN and αCGRP-/−. 12 weeks after surgery (late OA stage), BS/BV of ALN sham mice was significantly reduced in relation to ALN DMM, WT and Tac1-/− sham, while Tb.Th. increased compared to WT. DMM significantly decreased Tb.N. and increased Tb.Sp. in Tac1-/− compared to sham 12 weeks after surgery. CTX-I concentrations were significantly higher in ALN compared to Tac1-/− mice 4 weeks after sham surgery. 12 weeks after sham surgery CTX-I concentrations of WT mice were increased compared to αCGRP-/− and Tac1-/− mice. Over time, DMM induced stronger changes in subchondral bone of WT mice compared to knockout strains. WT and αCGRP-/− sham mice also show alterations in bone parameters over time indicating age-related effects on bone structure. SP deficiency enhanced DMM-induced structural bone alterations in late stage OA emphasizing the importance of SP under pathophysiological conditions. Osteoclast inhibition with alendronate proved to be preservative for time-dependent changes of subchondral bone observed in both, DMM and sham mice. Interestingly, ALN treatment did not reduce bone turnover marker CTX-I, and additionally promoted early osteophyte formation in sham mice


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 14 - 14
1 Jan 2017
Favre J Babel H Omoumi P Jolles B
Full Access

Knee osteoarthritis (OA) affects an estimated 250 million people worldwide, with a cure yet to be found. Consequently, there is an urgent need to improve our understanding of OA physiopathology. While knee OA has long been mostly described as a loss of cartilage thickness (CTh) and research has focused on this characteristic, the role of bone alterations is rapidly gaining in interest. Analyzing subchondral bone mineral density (sBMD) is particularly interesting because this could inform on the mechanical environment at the knee. However, there is a paucity of data on sBMD in literature mainly because of the lack of prior methods to measure this parameter. A method for 3D sBMD assessment based on computed tomography (CT) scans was recently proposed, thus allowing testing for sBMD differences in knee OA. This study aimed at comparing non-OA and medial OA knees in terms of tibial sBMD and CTh. Specifically, it was hypothesized that sBMD and CTh differ with OA. Ten knees with severe medial OA and 10 matched non-OA knees were analyzed after ethical approval (50% male; 60 ± 3 years old). The arthro-CT scans of the 20 knees were segmented using custom software to build 3D mesh models of the tibial bone and cartilage. CTh maps were obtained by calculating the distance between cartilage and bone meshes, while sBMD maps were calculated based on the intensity of the CT in the first 3mm of bone. For each knee, the average CTh and sBMD values over the entire medial and lateral compartments were calculated and used to determine the medial-to-lateral (M/L) CTh and sBMD ratios. Unpaired t-tests and receiver operating characteristic (ROC) were used for statistical analysis. The M/L sBMD ratio was significantly higher in OA compared to non-OA knees (1.14 ± 0.04 vs. 1.08 ± 0.03; p<0.01), whereas the CTh ratio was not significantly different between groups (0.70 ± 0.21 vs. 0.85 ± 0.10; p=0.06). No significant differences were found between OA and non-OA knees for the average medial CTh and sBMD (p>0.4). High classification performance was obtained for the sBMD ratio and low performance for the average sBMD in the medial compartment (areas under the ROC curve of 0.9 and 0.6, respectively). CTh ratio and medial compartment average provided medium classification performances (areas under the curve of 0.7). This study showed that sBMD differed between non-OA and severe medial OA knees and that sBMD M/L ratio was more sensitive to OA severity than CTh variables. These results brought new insights into the pathogenesis of knee OA, by supporting the idea that sBMD is altered with OA and suggesting that sBMD could play a role in disease development. Indeed, the mechanical stresses on the cartilages are related to the mechanical characteristics of the bones. Indirectly, this study also demonstrated the value of arthro-CT scans to simultaneously assess sBMD and CTh. Additional studies with larger cohorts of patients at different stages of the disease are necessary to better understand when changes in sBMD occur


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_III | Pages 443 - 443
1 Jul 2010
Fladischer T Glehr M Gruber G Zacherl M Leithner A Windhager R
Full Access

Background: Desmoplastic fibroma (DF) of bone is a very infrequent non-metastasizing osseous tumour with local aggressive appearance. The tendency of local recurrence in published cases is high. Case reports: We present the clinical and radiological data of a male (35 years) and a female (37years) patient suffering from desmoplastic fibroma. Although in literature spinal lesions are severity rare, in our database two lesions located in the spine (C6 and L4) were identified. The first disturbances have been variable: The lesion in C6 was an accidental finding due to a control examination of a thyroid-ca, whereas the relapse-tumour of the L4 induced lumbago and hypaesthesia of the left heel. Due to the importance of the thyroid treatment it was decided to control the lesion in C6 in close intervals. The lumbar tumour was initially treated outside and the first relapse was marginal resected at our department 11 years after the first diagnosis. The bone alterations appeared radiographically lytic and cystic. Discussion: The spine is an unusual location of desmoplastic fibroma which arises in 56% at the long tubular bones followed by the mandible. To our knowledge only a few cases are reported to be located in the spine. DF located spinal, is a very untypical tumour and initial symptoms can be very unequal. Due to this dissimilar symptoms and variable histological appearance the diagnosis can be tricky. At least marginal resection should be achieved because intraleasional resected lesions show a local recurrence of 43%


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_II | Pages 175 - 175
1 Apr 2005
Calvosa G Tenucci M Po F Guido G
Full Access

Based on the concepts of White and Panjabi of 1990 we have classified vertebral instabilities into congenital and acquired. The congenital instabilities are due to evident bone alterations that bring about mechanical instability, such as in spondylolisthesis and bone defects of formation and segmentation, or are caused by alteration of the elastic stability of the spinal column, such as in ligamental luxation of the Ehlers-Danlos syndrome or neuromuscular asthenia. Acquired vertebral instabilities include the extensive and much discussed issue of degenerative instabilities and secondary instabilities associated with rheumatoid arthritis, traumatic pathology, neoplastic, iatrogenic instabilities, etc. The spine is a complex structure in elastic equilibrium between functional demand and the physiological resistance of the motor segments, that is the articulations, capsules and ligaments, and the muscles. Like Aulisa and Vinciguerra (1994) we are inclined to refer to stable and unstable equilibrium of the spine and to distinguish “mechanical” stability from “biological” stability. There are authoritative cases of evident macro-instability where the functional units, even though affected by serious mechanical alteration, are able to conserve a totally asymptomatic vertebral column in a state of elastic compensation for a long time. We have classified our cases according to Christian Pfirrmann’s classification of lumbar intervertebral disc degeneration (2001), completing it with the three types of disc degeneration that Modic suggested in 1998. We present our case histories from 2001 to 2002 of macro-instabilities of lumbo-sacral spine treated with stabilisation, PLIF and fusion and of micro-instabilities treated with dynamic stabilisation in neutralisation without fusion. In instabilities when one or more motor segments do not respond to permanent stress and the discs begin to change structurally and demonstrate phenomena of fissuring and dehydration, to the point of assured degeneration and collapse, we have developed a two-fold method of treatment:. MICRO-INSTABILITY: when the degenerative phenomena are still in progress and TAC, RMN and functional radiographs can identify an early phase, we propose dynamic stabilisation in neutralisation in order to restore the height of the disc and cancel the disc-radicular conflict, thus maintaining the capacity of movement of the functional unit. MACRO-INSTABILITY: when the clinical examination and imaging study show late-stage degenerative instability with collapse of the disc space and insufficiency of level with evident somatic traction spurs and reactive sclerosis of vertebral plates, then we believe that today only fusion can relieve the painful symptoms


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 100 - 100
1 Jan 2017
Navruzov T Rivière C Van Der Straeten C Harris S Cobb J Auvinet E Aframian A Iranpour F
Full Access

The accurate positioning of the total knee arthroplasty affects the survival of the implants(1). Alignment of the femoral component in relation to the native knee is best determined using pre- and post-operative 3D-CT reconstruction(2). Currently, the scans are visualised on separate displays. There is a high inter- and intra-observer variability in measurements of implant rotation and translation(3). Correct alignment is required to allow a direct comparison of the pre- and post-operative surfaces. This is prevented by the presence of the prostheses, the bone shape alteration around the implant, associated metal artefacts, and possibly a segmentation noise. The aim is to create a novel method to automatically register pre- and post-operative femora for the direct comparison of the implant and the native bone. The concept is to use post-operative femoral shaft segments free of metal noise and of surgical alteration for alignment with the pre-operative scan. It involves three steps. Firstly, using principal component analysis, the femoral shafts are re-oriented to match the X axis. Secondly, variants of the post-operative scan are created by subtracting 1mm increments from the distal femoral end. Thirdly, an iterative closest point algorithm is applied to align the variants with the pre-operative scan. For exploratory validation, this algorithm was applied to a mesh representing the distal half of a 3D scanned femur. The mesh of a prosthesis was blended with the femur to create a post-operative model. To simulate a realistic environment, segmentation and metal artefact noise were added. For segmentation noise, each femoral vertex was translated randomly within +−1mm,+−2mm,+−3mm along its normal vector. To create metal artefact random noise was added within 50 mm of the implant points in the planes orthogonal to the shaft. The alignment error was considered as the average distance between corresponding points which are identical in pre- and post-operative femora. These preliminary results obtained within a simulated environment show that by using only the native parts of the femur, the algorithm was able to automatically register the pre- and post-operative scans even in presence of the implant. Its application will allow visualisation of the scans on the same display for the direct comparison of the perioperative scans. This method requires further validation with more realistic noise models and with patient data. Future studies will have to determine if correct alignment has any effect on inter- and intra-observer variability


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 52 - 52
1 Mar 2017
Navruzov T Riviere C Van Der Straeten C Harris S Aframian A Iranpour F Cobb J Auvinet E
Full Access

Background. The accurate positioning of the total knee arthroplasty affects the survival of the implants(1). Alignment of the femoral component in relation to the native knee is best determined using pre- and post-operative 3D-CT reconstruction(2). Currently, the scans are visualised on separate displays. There is a high inter- and intra-observer variability in measurements of implant rotation and translation(3). Correct alignment is required to allow a direct comparison of the pre- and post-operative surfaces. This is prevented by the presence of the prostheses, the bone shape alteration around the implant, associated metal artefacts, and possibly a segmentation noise. Aim. Create a novel method to automatically register pre- and post-operative femora for the direct comparison of the implant and the native bone. Methods. The concept is to use post-operative femoral shaft segments free of metal noise and of surgical alteration for alignment with the pre-operative scan. It involves three steps. Firstly, using principal component analysis, the femoral shafts are re-oriented to match the X axis. Secondly, variants of the post-operative scan are created by subtracting 1mm increments from the distal femoral end (Fig1). Thirdly, an iterative closest point algorithm is applied to align the variants with the pre-operative scan. For exploratory validation, this algorithm was applied to a mesh representing the distal half of a 3D scanned femur. The mesh of a prosthesis was blended with the femur to create a post-operative model. To simulate a realistic environment, segmentation and metal artefact noise were added. For segmentation noise, each femoral vertex was translated randomly within +−1mm,+−2mm,+−3mm along its normal vector. To create metal artefact random noise was added within 50 mm of the implant points in the planes orthogonal to the shaft. The alignment error was considered as the average distance between corresponding points which are identical in pre- and post-operative femora. Results. Figure 2 shows, that when the implant zone is completely ignored, the error reaches a minimum plateau to below 1mm level. Different levels of segmentation noise had low impact on error value. Conclusions. These preliminary results obtained within a simulated environment show that by using only the native parts of the femur, the algorithm was able to automatically register the pre- and post-operative scans even in presence of the implant. Its application will allow visualisation of the scans on the same display for the direct comparison of the perioperative scans. This method requires further validation with more realistic noise models and with patient data. Future studies will have to determine if correct alignment has any effect on inter- and intra-observer variability. For figures, please contact authors directly.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 125 - 125
1 May 2012
Nguyen H Gineyts E Wu A Cassady A Bennett M Morgan D Delmas P Forwood M
Full Access

It is not known if the radiation sterilisation dose (RSD) of 25 kGy affects mechanical properties and biocompability of allograft bone by alteration of collagen triple helix or cross-links. Our aim was to investigate the mechanical and biological performance, cross-links and degraded collagen content of irradiated bone allografts. Human femoral shafts were sectioned into cortical bone beams (40 × 4 × 2 mm) and irradiated at 0, 5, 10, 15, 20, and 25 kGy for three-point bending tests. Corresponding cortical bone slices were used for in vitro determination of macrophage activation, osteoblast proliferation and attachment, and osteoclast formation and fusion. Subsequently, irradiated cortical bone samples were hydrolised for determination of pyridinoline (PYD), deoxypyridinoline (DPD), and pentosidine (PEN) by high performance liquid chromatography (HPLC) and collagen degradation by the alpha chymotrypsin (ï. j. CT) method. Irradiation up to 25 kGy did not affect the elastic properties of cortical bone, but the modulus of toughness was decreased from 87% to 74% of controls when the gamma dose increased from 15 to 25 kGy. Macrophages activation, the proliferation and attachment of osteoblasts on irradiated bone was not affected. Osteoclast formation and fusion were less than 40% of controls when cultured on bone irradiated at 25 kGy, and 80% at 15 kGy. Increasing radiation dose did not significantly alter the content of PYR, DPD or PEN but increased the content of denatured collagen. Cortical allografts fragility increases at doses above 15 kGy. Decreased osteoclast viability at these doses suggests a reduction in the capacity for bone remodelling. These changes were not correlated with alterations in collagen cross-links but in degradation to the collagen secondary structure as evidenced by increased content of denatured collagen


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 424 - 424
1 Oct 2006
Sirtori P Sosio C Fraschini G
Full Access

In the past the prevailing view believed that there was an inverse relationship between osteoarthritis and osteoporosis; a recent study showed that elderly women with advanced osteoarthritis requiring total hip replacement had an evidence of osteoporosis and vitamin-D deficiency. An altered metabolic bone status as induced by low level of vitamin D could be one of the major causes of aseptic bone loosening and consequently failure of the implant. We studied the bone mineral metabolism of thirty elderly women with osteoarthritis undergoing total hip replacement in order to identify whether or not there were a bone metabolic alterations. All the subjects included in the study were over than 70 years old (mean age 74 ± 2.5). The results showed that six (20%) subjects had a hypovitaminosis D status and eighteen (60%) had a vitamin D deficiency status. Five subjects (16%) had a secondary iperparathyroidism. The bone mineral metabolism of elderly women with osteoarthritis undergoing total hip replacement is characterised by a high prevalence of vitamin D deficiency and in a less percentage of the cases by a secondary iperparathyroidism. Both of these metabolic conditions could compromise the bone integration of the implant and lead to aseptic bone loosening


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_II | Pages 189 - 189
1 Jul 2002
Paprosky W
Full Access

From 1992 to 1996, 142 consecutive hip revisions were performed with the use of an extended proximal femoral osteotomy. Twenty patients had insufficient follow-up or were followed elsewhere and were excluded from the review. The remaining 122 revisions included 83 women and 39 men. Average age at time of revision was 63.8 (26–84) years. Indications for revision were aseptic loosening (114), component failure (4), recurrent dislocation (2), femoral fracture (1), and second stage re-implantation for infection (1). The extended proximal femoral osteotomy gave easy access to the distal bone-cement or bone-prosthesis interface in all cases. It allowed neutral reaming of the femoral canal and implantation of the revision component in proper alignment. Varus remodelling of the proximal femur secondary to loosening was handled with relative ease implementing the osteotomy. Average time from the beginning of the osteotomy procedure to the complete removal of prosthesis and cement was thirty-five minutes. There were no non-unions of the osteotomised fragments at an average post-op follow- up of 2.6 years with no cases of proximal migration of the greater trochanteric fragment greater than 2 mm. There was evidence of radiographic union of the osteotomy site in all cases by 3 months. Stem fixation with bone ingrowth was noted in 112 (92%) of 122 hips, stable fibrous fixation was seen in nine (7%) and one stem (1%) was unstable and was subsequently revised. We have found that use of the osteotomy is an efficient, safe, and reliable technique in revision hip arthroplasty. The advantages include easier access to the fixation surface of the failed prosthesis without compromising the remaining bone stock, alteration of proximal bone deformities to allow neutral reaming of the femoral canal, predictable healing of the osteotomised fragment, proper tensioning of the abductors with distal advancement, decreased operative time, and enhanced exposure of the acetabulum


Bone & Joint Research
Vol. 8, Issue 6 | Pages 255 - 265
1 Jun 2019
Hernigou J Schuind F

Objectives

The aim of this study was to review the impact of smoking tobacco on the musculoskeletal system, and on bone fractures in particular.

Methods

English-language publications of human and animal studies categorizing subjects into smokers and nonsmokers were sourced from MEDLINE, The Cochrane Library, and SCOPUS. This review specifically focused on the risk, surgical treatment, and prevention of fracture complications in smokers.