Cartilage injuries often represent irreversible tissue damage because cartilage has only a low ability to regenerate. Thus, cartilage loss results in permanent damage, which can become the starting point for osteoarthritis. In the past,
Introduction and Objective. Bone is a tissue which continually regenerates and also having the ability to heal after injuries however, healing of large defects requires intensive surgical treatment. Bioactive glasses are unique materials that can be utilized in both bone and skin regeneration and repair. They are degradable in physiological fluids and have osteoconductive, osteoinductive and osteostimulative properties. Osteoinductive growth factors such as Bone Morphogenetic Proteins (BMP), Vascular Endothelial Growth Factor (VEGF), Epidermal Growth Factor (EGF), Transforming Growth Factor (TGF) are well known to stimulate new bone formation and regeneration. Unfortunately, the synthesis of these factors is not cost- effective and, the broad application of growth factors is limited by their poor stability in the scaffolds. Instead, it is wise to incorporate osteoinductive nanomaterials such as graphene nanoplatelets into the structures of synthetic scaffolds. In this study, borate-based 13-93B3
Aim. Biomaterial-associated infections (BAI) present a formidable clinical challenge. Bioactive glasses (BG) have proven highly successful in diverse clinical applications, especially in dentistry and orthopaedics. In this study, we aimed to determine the effect of three commonly used BG composition and particle sizes on cell and bacterial attachment and growth. Our focus is on understanding the changes in pH and osmotic pressure in the surrounding environment during glass degradation. Method. First, three different melt-derived glasses were characterized by analyzing particle size and glass network structure using Raman and NMR. The different glasses were then tested in vitro by seeding 4x 10. 4. cells/well (SaOS Cell line) in a 48 well plate. After a pre-incubation period of 72 hours, the different BGs and particle sizes were added to the cells and the pH value, ion release and live/dead staining was measured every hour. The effect of BG against bacteria (S. epidermidis) was analyzed after 24 and 72 hours of treatment by using XTT viability assay and CFU counting by plating out the treated aliquot agar to estimate the viable bacteria cells. Results. All three BG compositions tested showed a significant increase in pH, which was highest in BG composition 45S5 with a value of 11 compared to the other BG compositions 10 and 9 in S53P4 and 13-93 respectively. This strong increase in the pH in all BG samples tested results in a strongly reduced cell viability rate of more than 75% compared to the untreated control and 6-fold reduction in bacterial viability compared to the untreated control. The live/ dead assay also showed an increased cell viability with increasing glass particle size (i. e smallest glass particle < 25% viable cell and largest glass particle> 65% viable cell). The ion release concentration over 50 h showed an increase in sodium ions to 0.25 mol/L, calcium to 0.003 mol/L and a decrease in phosphorus. Conclusions. These results show that the composition of the
Osteomyelitis is an infectious process in bone occasionally leading to bone destruction. Traditionally a two-stage operation is performed using PMMA + antibiotic beads or a spacer. In the second operation the void filler is removed and the defect is filled with autologous bone.
Chronic osteomyelitis is historically treated in a two stage fashion with antibiotic-loaded polymethylmethacrylate (PMMA) as local antibacterial therapy. However, two-stage surgeries are associated with high morbidity, long hospitalization and high treatment costs. In recent years new biomaterials were developed that allow to change this treatment algorithm. S53P4
Aims: In a recent study, chemical microroughening of
Aims: Bioactive glasses are a family of silica-based synthetic biomaterials, which form chemical bonding with the surrounding bone. The limiting biologic factors of the bonding process are poorly understood. The hypothesis of the current study was that there are species-specific differences in the incorporation of bioactive glasses due to anatomic and physiologic factors. Methods: Conical porous implants made of sintered
The bone infection osteomyelitis (typically Staphylococcus aureus) requires a multistep treatment process including: surgical debridement, long-term systemic high-dose antibiotics, and often bone grafting. With antibiotic resistance becoming increasingly concerning, alternative approaches are urgently needed. Herein, we develop a one-step treatment for osteomyelitis that combines local, controlled release of non-antibiotic antibacterials (copper) within a proven regenerative scaffold. To maximise efficacy we utilised
Introduction. Articular cartilage has a low self-regeneration capacity. Cartilage defects have to be treated to minimize the risk of the onset of osteoarthritis.
Aims: We wanted to compare
The regenerative capacity of hyaline cartilage is greatly limited. To prevent the onset of osteoarthritis, cartilage defects have to be properly treated. Cartilage, tissue engineered by mean of
The rationale for a degradable
Introduction: New biological approaches to reconstruction of major bone deficiency such as the use of bone substitutes and growth factors are being developed. This paper reports on the adverse response to the Bioglass in comparison to allograft alone. Aim: To compare the biological response to femoral impaction grafting and a cemented femoral stem when using allograft bone versus allograft bone plus a synthetic bone graft substitute,
Introduction and Objective. Regeneration of cartilage injuries is greatly limited. Therefore, cartilage injuries are often the starting point for later osteoarthritis. In the past, various
Aims: The present study examined the effect of ade-novirus-mediated recombinant human BMP-2 (RAd-BMP-2) gene therapy combined with
Aim. We aimed to compare the in vitro antibacterial activity of
Hydrogels as scaffolds provide a suitable environment for the cells (biocompatibility, biodegradability). Their biomechanical properties are very important to provide not only direct support to the surrounding tissue but also provide a local microenvironment. There is an interest in composite hydrogels with hydroxylapatite or
Bioactive glasses (BGs) promote osteogenic differentiation of bone progenitor cells by releasing therapeutically active ions. The well-described 45S5-BG (in mol%: SiO2 46.13; P2O5 2.60; CaO 26.91; Na2O 24.35) was supplemented with CaF2 and NaF being added to the batch at nominal 5 (F5-BG) and 25 mol% (F25-BG), respectively. While the effect on physical and chemical properties has already been characterized, the biological properties require further studies. This study investigates the effects of fluoride-supplemented BGs on the osteogenic and angiogenic properties of human bone marrow mesenchymal stromal cells (BMSCs) in vitro. BMSCs were co-cultured with melt-derived 45S5-BG, F5-BG, or F25-BG in ascending concentrations (1, 2 and 3 mg/ml). At 7 days, cell number was determined by 4,6-diamidine-2-phenylindole (DAPI) staining and cell viability by fluorescein diacetate (FDA) assay. The osteogenic potential of the BGs was evaluated through alkaline phosphatase (ALP) gene expression and activity, along with bone morphogenetic protein-2 (BMP2) gene expression and protein concentration. Vascular endothelial growth factor (VEGF) gene expression and protein concentration assessed angiogenic potential. As control, BMSCs were cultured without BG exposure.Introduction
Method
Bio-Active Glass (BAG) is a promising bone graft substitute for large bone defect reconstruction because of its favourable osteoconductive, antibacterial and angiogenic properties. Potentially, it could also mechanically reinforce the defect, thus making it suitable for load-bearing defects. However, the mechanical properties of the reconstructive layer consisting of BAG/bone allograft mixtures are unknown. The goals of this study therefore were, first, to measure the mechanical properties of different BAG/bone graft mixtures and, second, to investigate to what extent such mixtures could reinforce distal tibial defects using micro-FE analysis and high-resolution CT scans. Four different BAG/bone graft mixtures were impacted in a cylindrical holder, mechanically tested in confined compression and scanned with micro-CT. From these images, bone graft material and glass were segmented using two different threshold values. The interface between bone and BAG was modelled separately by dilating the glass phase. Micro-Finite-Element (FE) models of the composites were made using a Young's modulus of 2.5 GPa for bone and 35 GPa for BAG. The Young's modulus for the interface region was determined by fitting experimental and micro-FE results for the same specimens. (82 μm resolution) CT scans of a 9 mm region of the distal tibia of 3 subjects were used. Micro-FE models of this region were made to determine its stiffness in the original state, with a simulated cortical defect and after a mixture of BAG/bone was modelled in the defect.Background
Materials and Methods