Advertisement for orthosearch.org.uk
Results 1 - 12 of 12
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 93 - 93
1 Mar 2009
Bianchi G Donati D Di Bella C Colangeli M Colangeli S Mercuri M
Full Access

Introduction: The use of allograft prosthetic composite (APC) of the proximal tibia offers advantages over prosthetic replacement or osteoarticular graft with a better functional outcome since the possibility of a careful soft tissue reconstruction;. Materials and Methods: From 1994 to 2002, 62 APC of the proximal tibia were performed in our department after bone tumor resection (56 malignant bone tumors, 4 cases of previously failed knee implant and 2 stage 3 benign tumors). The patients median age was 18 yrs (range: 11–77 yrs) and the mean resected length was 13.2 cm (range: 8.5–28 cm). The median follow up was 59 months (range: 13–137 months). Results: In three patients (4,8%) a recurrence was reported at 22, 33 an 40 months and amputation was performed. Infection was reported in 15 patients (24.2%): 2 early infections (healed with surgical debridment), 1 femoral stem septic loosening (treated with early revision with cemented stem); in 8 cases removal of the infected APC was required followed by implant of a new prosthetic device after cement spacer; two infections did not healed and patient underwent amputation; in two cases a good functional result was achieved removing the infected graft and covering the proximal tibia with cement and no other surgery was required. Non union of the graft was observed in 8 patients (12.9%): in 4 patients autologous bone grafting was necessary to heal the osteotomy line. In other 3 cases non union was associated with graft fracture. In one case non union was associated with tibial stem loosening and revision of the whole implant was done. Polyethylene wear was assessed in 5 patients (8%) and revision of the polyethylene components was always required. Nine patellar tendon rupture (14.5%) were assessed and repaired was performed in seven cases. The functional outcome of 42 patients with more than two years of follow up was excellent in 25 cases, good in 13, fair in 2 and poor in 2. Discussion: APC of the proximal tibia is an effective alternative to osteoarticular graft and modular prosthesis because it allows good to excellent results in most of the patients (90.4%). The major concern is infection rate (24.2%) that usually lead to amputation (80%). Non union does not usually represent a problem because it’s tendency to spontaneous or bone grafting induced healing. Aseptic loosening of the tibial or femoral stem is rare. Patellar tendon rupture rate (14.5%) is similar to modular prosthetis rate and can be lowered using a femoral component with patellar groove


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_13 | Pages 89 - 89
1 Nov 2015
Ries M
Full Access

The Vancouver classification separates periprosthetic femur fractures after THA into three regions (A - trochanteric, B - around or just below the stem, and C - well below the stem), with fractures around or just below the stem further separated into those with a well-fixed (B1) or loose stem and good (B2) or poor (B3) bone stock. Trochanteric fractures may be associated with osteolysis and require treatment that addresses osteolysis as well as ORIF of displaced fractures. Fractures around a well-fixed stem can be treated with ORIF using cerclage or cable plating, while those around a loose stem require implant revision usually to a longer cementless tapered or distally porous coated cementless stem. Fractures around a loose stem with poor bone stock in which salvage of the proximal femur is not possible require replacement of the proximal femur with an allograft prosthetic composite or proximal femoral replacement. Fractures well below the stem can be treated with conventional plating methods. Periprosthetic acetabular fractures are rare and usually occur in the early post-operative period or late as a result of osteolysis or trauma. These can generally be separated into those with a stable acetabular component which can be treated non-operatively, and those with an unstable component often with discontinuity or posterior column instability which require complex acetabular reconstruction utilizing plating or revision to a cup-cage


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 63 - 63
1 Jun 2018
Paprosky W
Full Access

The unacceptable failure rate of cemented femoral revisions led to many different cementless femoral designs employing fixation in the damaged proximal femur with biological coatings limited to this area. The results of these devices were uniformly poor and were abandoned for the most part by the mid-1990's. Fully porous coated devices employing distal fixation in the diaphysis emerged as the gold standard for revisions with several authors reporting greater than 90% success rate 8–10 years of follow-up. Surgical techniques and ease of insertion improved with the introduction of the extended trochanteric osteotomy as well as curved, long, fully porous coated stems with diameters up to 23mm. The limits of these stems were stretched to include any stem diameter in which even 1–2cm of diaphyseal contact could be achieved. When diaphyseal fixation was not possible (Type IV), the alternatives were either impaction grafting or allograft prosthetic composite (APC). As the results of fully porous coated stems were very carefully scrutinised, it became apparent that certain types of bone loss did not yield the most satisfactory results both clinically and radiographically. When less than 4cm of diaphyseal press fit (Type IIIB) was achieved, the mechanical failure rate (MFR) was over 25%. It also became apparent that even when there was 4–6cm diaphyseal contact (Type IIIA), and the stem diameter was 18mm or greater, post-operative pain and function scores were significantly less than those with smaller diameter stems. This was probably due to poorer quality bone. Many of these Type IIIA and Type IIIB femurs had severe proximal torsional remodeling leading to marked distortion of anteversion. This made judging the amount of anteversion to apply to the stem at the time of insertion very difficult, leading to higher rates of dislocation. These distortions were not present in Type I and Type II femurs. This chain of events which was a combination of minimal diaphyseal fixation, excessively stiff stems and higher dislocation rates led to the conversion to modular type stems when these conditions existed. For the past 13 years, low modulus taper stems of the Wagner design have been used for almost all Type IIIA and Type IIIB bone defects. The taper design with fluted splines allows for fixation when there is less than 2cm of diaphysis. The results in these femurs even with diameters of up to 26mm have led to very low MFRs and significantly less thigh pain. Independent anteversion adjustment is also a huge advantage in these modular stems. Similar success rates, albeit with less follow-up, have been noted in Type IV femurs


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 94 - 94
1 Aug 2017
Sierra R
Full Access

The technique involves impaction of cancellous bone into a cavitary femur. If segmental defects are present, the defects can be closed with stainless steel mesh. The technique requires retrograde fill of the femoral cavity with cancellous chips of appropriate size to create a new endomedullary canal. By using a set of trial impactors that are slightly larger than the real implants the cancellous bone is impacted into the tube. Subsequent proximal impaction of bone is performed with square tip or half moon impactors. A key part of the technique is to impact the bone tightly into the tube especially around the calcar to provide optimal stability. Finally a polished tapered stem is cemented using almost liquid cement in order to achieve interdigitation of the implant to the cancellous bone. The technique as described is rarely performed today in many centers around the world. In the US, the technique lost its interest because of the lengthy operative times, unacceptable rate of peri-operative and post-operative fractures and most importantly, owing to the success of tapered fluted modular stems. In centers such as Exeter where the technique was popularised, it is rarely performed today as well, as the primary cemented stems used there, rarely require revision. There is ample experience from around the globe, however, with the technique. Much has been learned about the best size and choice of cancellous graft, force of impaction, surface finish of the cemented stem, importance of stem length, and the limitations and complications of the technique. There are also good histology data that demonstrate successful vascularization and incorporation of the impacted cancellous bone chips and host bone. Our experience at the clinic was excellent with the technique as reported in CORR in 2003 by M Cabanela. The results at mid-term demonstrated minimal subsidence and good graft incorporation. Six of 54 hips, however, had a post-operative distal femoral fracture requiring ORIF. The use of longer cemented stems may decrease the risk of distal fracture and was subsequently reported by the author after reviewing a case series from Exeter. Today, I perform this technique once or twice per year. It is an option in the younger patient, where bone restoration is desired. Usually in a Paprosky Type IV femur, where a closed tube can be recreated and the proximal bone is reasonable. If the proximal bone is of poor quality, then I prefer to perform a transfemoral osteotomy, and perform an allograft prosthetic composite instead of impaction grafting, and wrap the proximal bone around the structural allograft. I prefer this technique as I can maintain the soft tissues over the bone and avoid the stripping that would be required to reinforce the bone with struts or mesh. Another indication for its use in the primary setting is in the patient with fibrous dysplasia


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_8 | Pages 97 - 97
1 May 2014
Haidukewych G
Full Access

Vancouver A: If minimal displacement and prosthesis stable can treat nonoperatively. If displacement is unacceptable and/or osteolysis is present consider surgery. AL: Rare, avulsions from osteopenia and lysis. If large, displaced and include large portion of calcar-can destabilise stem and prompt femoral revision. AG: More common. Often secondary to lysis. Does not usually affect implant stability. Minimal displacement. Treat closed × 3 months. Revise later is needed to remove the particle generator, debride defects and bone graft. Displaced with good host bone stock. Consider early ORIF and bone grafting. Vancouver B:. B1: Rarely non-operative. ORIF with femoral component retention. Need to carefully identify stem fixation. B2's classified as B1's are doomed to fail. B1's correctly identified treated with plate, allograft struts or both. High union rates with component retention. B2: Femoral revision +/− strut allograft. Best results seen with patients revised with uncemented, extensively porous coated femoral stems. May use modular, fluted taper stems. B3: Proximal femoral replacement - Tumor prosthesis, Allograft Prosthetic Composite (APC). Uncemented femoral stem - Extensively porous coated, Fluted, tapered stem, Allograft strut. Vancouver C: Treat with standard fracture techniques. These fractures are away from the femoral prosthesis. Rarely nonoperative. Fixation options – Cerclage, Strut Allograft, Plate fixation, Retrograde IM nail, or a Combination thereof. Avoid stress risers between implants. Bypass (overlap) fixation. Consider allowing 2.5 cortical diameters between devices


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_III | Pages 302 - 302
1 Nov 2002
Benkovich V Rath E Gortchak Y Vindzberg A Atar D
Full Access

Introduction: The increasing utilization of total hip arthroplasty and the increasing life expectancy have brought an increasing incidence of revision hip arthroplasty. With severe acetabular, revision surgery with the use of standard cemented or press-fitted components is inadequate for fixation. In these cases the use of proximal femoral allograft can restore the deficiency. Purpose: To present a new technique and preliminary results of revision total hip arthroplasty using proximal femoral allograft prosthetic composites for massive ace-tabular bone loss. The technique uses the natural vector of forces in the intertrochanteric region in an opposite direction at the acetabular defect. Methods: From June 2000 to July 2001, seven patients underwent reconstruction of massive acetabular defects with proximal femoral allograft bone. The etiologies for bone loss were infection in 2 patients, aseptic loosening in 4 and acetabular protrusion in 2 patients. In 4 hips there were also femoral defects that was reconstructed with allograft. The average age of the patients was 69.8 years. All patients were wheel chair bound prior to surgery. Harris Hip Score was used to assess preoperative and follow-up function level. Results: Harris Hip Score improved significantly in all patients. All patients are ambulatory at follow-up. Complications included 2 dislocation and 2 deep-vein thrombosis. No allograft resorbtion was noted at follow-up. Conclusions: The proximal femoral allograft provides a solid construct for the acetabular cup in large acetabular bone defects. Although failure and complication rates might be higher than revision procedures with lesser bone defects, this reconstructive option for massive ace-tabular defects dramatically improves a patient’s function level


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_II | Pages 173 - 173
1 Jul 2002
Berry D
Full Access

Prevention: Many periprosthetic femur fractures may be prevented by: (1) good patient follow-up, (2) timely reoperation of lytic lesions if radiographs suggest fracture risk, and (3) prophylactic use of longer stemmed implants or strut grafts to bypass cortical defects at revision surgery. Treatment: Periprosthetic fractures can be treated using an algorithmic approach based on the Vancouver classification system. Fractures of greater or lesser trochanter (Type A). Nonoperative treatment if displacement acceptable and if not associated with lysis. Operative treatment if displacement unacceptable or associated with progressive lysis Fractures of distal femur well distal to implant (Type C). Treat as any other femur fracture, usually operatively. Fixation options: plate/retrograde nails Fractures around the implant or at its tips (Type B). These fractures almost always require surgery. Nonoperative treatment is associated with high rate of malunion, nonunion, poor results. Treatment is according to fixation status of implant and bone quality. Well-fixed stem (Type B1): ORIF with cable plate and/or strut grafts. Loose stem, reconstructable bone (Type B2): revise implant to long stem; usually use uncemented, distally fixed implant; occasionally long cemented stem (avoid cement extrusion). * Principles: obtain fracture stability, implant stability, and optimise conditions for bone healing (use bone grafts, don’t strip periosteum). Loose stem, unreconstructable proximal bone damage (Type B3): revise substituting for proximal femur with allograft prosthetic composite or tumour prosthesis


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 510 - 510
1 Oct 2010
Babis G Connor M Hanssen A Sakellariou V Sim F
Full Access

Background: Massive bone loss from the proximal femur is a complex problem, occurring in multiple-revision hip arthroplasties, and malignancy. Allograft prosthetic composites (APCs) are used to restore bone loss and provide better function of the limb. Material and Methods: Between 1986 and 1999, 94 patients (96 hips) including 31 male and 63 female (mean age 59.5 years), with massive bone loss due to an average of 2 previous revisions, had a revision hip arthroplasty using an allograft-prosthesis composite (APC). A previous history of infection was present in 21 of these cases. Results: At an average follow-up of 11 years (range, 8 to 20 years), 72 patients were alive, 21 patients died, and 1 patient was lost to follow-up. Major complications occurred in 33 cases: femoral stem loosening (12); dislocation (15); periprosthetic fracture (10); and infection (7). Minor complications occurred in 13 other cases. Further revision surgery was performed in 21 of the 96 cases including revision of the acetabular component (3), femoral APC (16) or both (2). The 10 year survival of the APCs was 68.8% (95% CI 58.6%–79%, 26 cases remaining at risk). There was no statistically significant difference in survival time between gender, age, indication for APC (including infection), surgical approach and APC technique. Statistically significant factors negatively impacting APC survival included two or more prior revisions, severity of preoperative bone loss (Paprosky type IV) and use of plates and screws (p< 0.05). Statistically significant improvement in APC survival was identified in those reconstructions in which cement was used for proximal fixation of the femoral component within the allograft (p< 0.05). Conclusion: Reconstruction of massive proximal femoral bone loss with an allograft-implant composite is a demanding procedure. Preservation of bone stock is a great advantage of this biologic means of reconstruction. Specific technical issues should be known and followed so to avoid failure and need for early re-revision


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_22 | Pages 57 - 57
1 May 2013
Paprosky W
Full Access

The unacceptable failure rate of cemented femoral revisions led to many different cementless femoral designs employing fixation in the damaged proximal femur with biological coatings limited to this area. The results of these devices were uniformly poor and were abandoned for the most part by the mid 1990's. Fully porous coated devices employing distal fixation in the diaphysis emerged as the gold standard for revisions with several authors reporting greater than 90% success rate at 8–10 years of follow-up. Surgical techniques and ease of insertion improved with the introduction of the extended trochanteric osteotomy as well as curved, long, fully porous coated stems with diameters up to 23 mm. The limits of these stems were stretched to include any stem diameter in which even 1–2 cm of diaphyseal contact could be achieved. When diaphyseal fixation was not possible (Type IV), the alternatives were either impaction grafting or allograft prosthetic composite (APC). As the results of fully porous coated stems were very carefully scrutinised, it became apparent that certain types of bone loss did not yield the most satisfactory results both clinically and radiographically. When less than 4 cm of diaphyseal press fit (Type IIIB) was achieved, mechanical failure rate (MFR) was over 25%. It also became apparent that even when there was 4–6 cm. diaphyseal contact (Type IIIA), and the stem diameter was 18 mm or greater, post-op pain and function scores were significantly less than those with smaller diameter stems. This was probably due to poorer quality bone. Many of these Type IIIA and Type IIIB femurs had severe proximal torsional remodeling leading to marked distortion of anteversion. This made judging the amount of anteversion to apply to the stem at the time of insertion very difficult, leading to higher rates of dislocation. These distortions were not present in Type I and Type II femurs. This chain of events which was a combination of minimal diaphyseal fixation, excessively stiff stems and higher dislocation rates led to the conversion to modular type stems when these conditions existed. For the past 8 years, low modulus taper stems of the Wagner design have been used for almost all Type IIIA and Type IIIB bone defects. The taper design with fluted splines allows for fixation when there is less than 2 cm of diaphysis. The results in these femurs even with diameters of up to 26 mm have led to very low M.F.R.'s and significantly less thigh pain. Independent anteversion adjustment is also a hug advantage in these modular stems. Similar success rates, albeit with less follow-up, have been noted in Type IV femurs


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 221 - 221
1 Mar 2010
Rosenfeldt M French J Gray D Flint M
Full Access

The proximal humerus is the third most common site for primary sarcoma of bone. Since the 1970’s the treatment of primary bone sarcoma has changed from amputation to limb salvage. This has been due to advances in chemotherapy, imaging and surgical techniques. The literature has shown that the survival after limb salvage is similar to that of amputation. The optimum method of reconstruction of the shoulder remains controversial. The aim of our study was to review the cases of primary bone sarcoma of the proximal humerus treated at Middlemore Hospital. The New Zealand Bone Tumour Registry was searched for all lesions of the proximal humerus, with the diagnosis of chondrosarcoma, Ewing’s sarcoma or osteosarcoma. These records were reviewed for presentation status, biopsy, and type of reconstruct ion, chemotherapy, complications and recurrence. Outcomes measured in months of disease free survival and overall survival. The Bone Tumour Registry identified 29 patients who were treated at Middlemore Hospital with the primary diagnosis of Ewing’s sarcoma, chondrosarcoma or osteosarcoma of the proximal humerus. Results were available for 26 of the 29 patients (90% follow-up). Of these 29 patients six had chondrosarcoma, four Ewing’s sarcoma and 19 osteosarcoma. The patients with chondrosarcoma had an average age of 50 years. three patients were treated with endoprosthesis (mean survival 48 months) and one with vascularised fibula reconstruction (status 27 months ANED). Of the four patients with Ewing’s sarcoma, two had surgical reconstruction, one with intercalary allograft reconstruction (status 96 months ANED) and one with endoprosthesis (status 84 months ANED). The 19 patients with osteosarcoma had an average age 27 years, 15 patients were treated surgically. Three had endoprosthetic reconstruction (mean survival 29 months), two allograft prosthetic composite reconstruction (mean survival 23 months), three vascularised fibula reconstruction (mean survival 217 months), one total shoulder replacement and proximal humeral autograft (status 68 months ANED), one hemiarthroplasty (status 21 months DOD) and one proximal humeral allograft (status 31 months ANED). 4 patients were treated with primary amputation (mean survival 55.25 months). The mean overall survival for limb salvage surgery in our institution is 74 months compared to 55.25 months for amputation; this is consistent with the published literature. Function of a salvaged upper limb is superior to amputation. A salvaged limb is socially and emotionally more acceptable for patients than amputation. Limb salvage remains the priority in the treatment of primary bone tumours of the proximal humerus


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_III | Pages 211 - 211
1 Nov 2002
Choong PFM
Full Access

Sarcoma is a malignancy of mesenchymal and neuroectodermal tissue, and as such, may arise in any location in the body. It is a rare tumour accounting for less than 1 in 1000 cancers and occurs with an incidence of 1.7–2 per 100000 head of population. Disease free survival following treatment of sarcoma has increased significantly over the last 20–30 years and five year survival for primary bone malignancies is approximately 75–80% and that for soft tissue sarcomas is approximately 70%. Early attempts at limb sparing surgery was characterised by surgery with narrow margins, complicated incisions and substantial soft tissue bruising. Not surprisingly, the risk of local recurrence was high, but this was attributed to the nature of sarcoma rather than technique, and amputation became the treatment of choice for sarcoma. In the mid 1970’s, the importance of surgical margins was recognised and guidelines were established for achieving oncologic surgical margins. Intralesional and marginal margins alone were regarded as inadequate, while wide and radical margins were acceptable for achieving local control of disease. The advent of magnetic resonance imaging improved the level of tumour delineation and allowed more accurate preoperative planning. This together with modern chemotherapy and radiotherapy increased the potential for limb sparing surgery. Reconstruction following tumour resection is an exciting opportunity to protect the function of the limb and the mobility and independence of the patient. There have been a variety of techniques described and these involve either biological, prosthetic or a combination of these options. Reconstructions may be mobile or rigid. Mobile reconstructions frequently utilise prosthetic joints, but at other times pseudarthroses may function similarly, e.g. hip, shoulder. Osteoarticular allografts are also used to maintain joint function following tumour resection. Prosthetic joints incorporate advances in articulation and fixation to improve longevity as many of these devices are implanted into younger patients than normally anticipated for arthroplasty, and these joints are thus, exposed to an increased risk of wear and loosening. Osteoarticular allografts are prone to degenerative changes as well as graft disintegration and infection. Allograft prosthetic composites aim to reduce the articulation problems and may also assist in fixation of the construct. Biologic reconstructions using vascularised or non-vascularised bone are a useful technique for bridging defects and for replenishing bone stock. Adequate soft tissue coverage is vital following reconstruction. The future of limb sparing surgery will depend on our ability to characterise the biological behaviour of the tumour because this will provide more information on the response of the tumour to treatment, the potential grade of the lesion and thus, its capacity to grown and spread. By understanding the process of tumour progression, we will be able to develop better strategies for treatment. Functional nuclear scanning using isotopes that are metabolised by tumours is a technique that is currently being evaluated as a complementary form of imaging. Chemotherapy has been the cornerstone in the treatment of bone sarcomas, but remains surprisingly disappointing when used for soft tissue sarcomas. Recent meta-analyses have demonstrated only a minimal improvement in disease–free survival with chemotherapy. Novel techniques or agents are required to improve the systemic role of chemotherapy. Patient selection is important and this may relate to their risk of developing systemic spread. Prognostic factors are therefore, important for identifying patients who may be candidates for novel or intensive chemotherapy. Molecular biology is providing an avenue for characterising these tumours but despite the identification of a multitude of distinctive chromosomal abnormalities with their associated gene products, only 2 abnormalities have been shown to be of prognostic significance (19p+ in MFH, and SSX/SYT in synovial sarcoma). Surgeon education is an area where significant advances may be made. Constant reiteration is required to ensure that the principles of proper diagnosis and referral are known. Successful treatment is dependent on knowledge of the criteria for and technique of biopsy, and the principle that the team that will be providing definitive treatment should perform the biopsy. Up to 30% of limbs are sacrificed each year because of inappropriate biopsy or surgery. This figure may be improved upon with greater understanding of the behaviour of sarcomas. A regimented, multidisciplinary approach to the management of bone and soft tissue sarcomas is likely to improve the local and systemic control of this disease


Bone & Joint 360
Vol. 6, Issue 3 | Pages 10 - 12
1 Jun 2017