Advertisement for orthosearch.org.uk
Results 1 - 10 of 10
Results per page:
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_1 | Pages 1 - 1
1 Jan 2022
Srinivasan SH Murthy SN Bishnoi AJ Swamy G
Full Access

Abstract. In the pediatric population, scoliosis is classified into congenital, syndromic, idiopathic, and neuromuscular in aetiology. Syndromic scoliosis represents a wide range of systemic anomalies associated with scoliosis. The primary challenge for a clinician is to think beyond the scoliotic curve, as the underlying pathology is multisystemic. The aim of this review is to identify the systemic anomalies, associated with syndromic scoliosis. MEDLINE, EMBASE, and CINAHL databases were searched, dating from 1990–2020, relevant to the purpose of our study. Keywords used: “scoliosis”+ “syndrome” + “genetic”. Retrospective, prospective studies were included. Case reports that had fewer than 4 patients were not included. Delineating 60 articles, we found a total of 41 syndromes to be associated with scoliosis. Thoracic region was the most common level of scoliosis curve, being noted in 28 syndromes. Mental retardation, seizures, and ataxia were the commonly noticed CNS anomalies. VSD, ASD, and TGA were the anomalies associated with CVS; Hypotonia, rib and vertebral malformations were the most identified neuromuscular anomalies; pulmonary hypoplasia, renal agenesis, and strabismus were other associations. A multidisciplinary approach, involving spinal surgeons, paediatricians, geneticists, anesthesiologists, and allied health professionals, is vital for the best care of patients with syndromic scoliosis. The location of the scoliotic curve reflects the associated anomalies, as thoracic curvature is more closely linked with cardiac anomalies, while lumbosacral curvature is seen to be often linked with genitourinary anomalies. We hope that this article provides a clear overview of the systemic associations in syndromic scoliosis and thus, facilitates and streamlines the management protocol


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 35 - 35
14 Nov 2024
Bulut H Abasova F Basaran T Balaban P
Full Access

Introduction. Congenital scoliosis is a prevalent congenital spinal deformity, more frequently encountered than congenital lordosis or kyphosis. The prevailing belief is that most instances of congenital scoliosis are not hereditary but rather stem from issues in fetal spine development occurring between the 5th and 8th weeks of pregnancy. However, it has been linked to several genes in current literature. Our goal was to explore potential pathways through an exhaustive bioinformatics analysis of genes related to congenital scoliosis. Method. The literature from the 1970s to February 2024 was surveyed for genes associated with CS, and 63 genes were found to be associated with AIS out of 1743 results. These genes were analyzed using DAVID Bioinformatics. Result. Our pathway analysis has unveiled several significant associations with congenital scoliosis. Notably, “Glycosaminoglycan biosynthesis - chondroitin sulfate / dermatan sulfate” (P-Value:8.8E-3, Fold Enrichment: 20.6), “Central carbon metabolism in cancer” (P-Value:1.3E-3, Fold Enrichment: 10.3), and “Lysine degradation” (P-Value: 9.0E-3, Fold Enrichment: 9.1) emerge as statistically significant pathways. Additionally, “Endocrine resistance” (P-Value:4.4E-3, Fold Enrichment:7.4) and”EGFR tyrosine kinase inhibitor resistance” (P-Value: 1.7E-2, Fold Enrichment:7.3) pathways are noteworthy. These findings suggest a potential involvement of these pathways in the biological processes underlying congenital scoliosis. Furthermore, “Signaling pathways regulating pluripotency of stem cells” (P-Value:4.0E-4, Fold Enrichment:7.1), “Notch signaling pathway” (P-Value:6.7E-2, Fold Enrichment: 7.0), and “TGF-beta signaling pathway” (P-Value:6.2E-3, Fold Enrichment: 6.7) exhibit a less pronounced yet intriguing association that may warrant further investigation. Conclusion. In conclusion, our comprehensive analysis of the genetic etiology of congenital scoliosis has revealed significant associations with various pathways, shedding light on potential underlying biological mechanisms. While further research is needed to fully understand these associations and their implications, our findings provide a valuable starting point for future investigations into the management and treatment of congenital scoliosis


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 48 - 48
1 Dec 2022
Yee N Iorio C Shkumat N Rocos B Ertl-Wagner B Green A Lebel D Camp M
Full Access

Neuromuscular scoliosis patients face rates of major complications of up to 49%. Along with pre-operative risk reduction strategies (including nutritional and bone health optimization), intra-operative strategies to decrease blood loss and decrease surgical time may help mitigate these risks. A major contributor to blood loss and surgical time is the insertion of instrumentation which is challenging in neuromuscular patient given their abnormal vertebral and pelvic anatomy. Standard pre-operative radiographs provide minimal information regarding pedicle diameter, length, blocks to pedicle entry (e.g. iliac crest overhang), or iliac crest orientation. To minimize blood loss and surgical time, we developed an “ultra-low dose” CT protocol without sedation for neuromuscular patients. Our prospective quality improvement study aimed to determine: if ultra-low dose CT without sedation was feasible given the movement disorders in this population; what the radiation exposure was compared to standard pre-operative imaging; whether the images allowed accurate assessment of the anatomy and intra-operative navigation given the ultra-low dose and potential movement during the scan. Fifteen non-ambulatory surgical patients with neuromuscular scoliosis received the standard spine XR and an ultra-low dose CT scan. Charts were reviewed for etiology of neuromuscular scoliosis and medical co-morbidities. The CT protocol was a high-speed, high-pitch, tube-current modulated acquisition at a fixed tube voltage. Adaptive statistical iterative reconstruction was applied to soft-tissue and bone kernels to mitigate noise. Radiation dose was quantified using reported dose indices (computed tomography dose index (CTDIvol) and dose-length product (DLP)) and effective dose (E), calculated through Monte-Carlo simulation. Statistical analysis was completed using a paired student's T-test (α = 0.05). CT image quality was assessed for its use in preoperative planning and intraoperative navigation using 7D Surgical System Spine Module (7D Surgical, Toronto, Canada). Eight males and seven females were included in the study. Their average age (14±2 years old), preoperative Cobb angle (95±21 degrees), and kyphosis (60±18 degrees) were recorded. One patient was unable to undergo the ultra-low dose CT protocol without sedation due to a co-diagnosis of severe autism. The average XR radiation dose was 0.5±0.3 mSv. Variability in radiographic dose was due to a wide range in patient size, positioning (supine, sitting), number of views, imaging technique and body habitus. Associated CT radiation metrics were CTDIvol = 0.46±0.14 mGy, DLP = 26.2±8.1 mGy.cm and E = 0.6±0.2 mSv. CT radiation variability was due to body habitus and arm orientation. The radiation dose differences between radiographic and CT imaging were not statistically significant. All CT scans had adequate quality for preoperative assessment of pedicle diameter and orientation, obstacles impeding pedicle entry, S2-Alar screw orientation, and intra-operative navigation. “Ultra-low dose” CT scans without sedation were feasible in paediatric patients with neuromuscular scoliosis. The effective dose was similar between the standard preoperative spinal XR and “ultra-low dose” CT scans. The “ultra-low dose” CT scan allowed accurate assessment of the anatomy, aided in pre-operative planning, and allowed intra-operative navigation despite the movement disorders in this patient population


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 68 - 68
1 Dec 2022
Yee N Lorio C Shkumat N Rocos B Ertl-Wagner B Green A Lebel D Camp M
Full Access

Neuromuscular scoliosis patients face rates of major complications of up to 49%. Along with pre-operative risk reduction strategies (including nutritional and bone health optimization), intra-operative strategies to decrease blood loss and decrease surgical time may help mitigate these risks. A major contributor to blood loss and surgical time is the insertion of instrumentation which is challenging in neuromuscular patient given their abnormal vertebral and pelvic anatomy. Standard pre-operative radiographs provide minimal information regarding pedicle diameter, length, blocks to pedicle entry (e.g. iliac crest overhang), or iliac crest orientation. To minimize blood loss and surgical time, we developed an “ultra-low dose” CT protocol without sedation for neuromuscular patients. Our prospective quality improvement study aimed to determine:. if ultra-low dose CT without sedation was feasible given the movement disorders in this population;. what the radiation exposure was compared to standard pre-operative imaging;. whether the images allowed accurate assessment of the anatomy and intra-operative navigation given the ultra-low dose and potential movement during the scan. Fifteen non-ambulatory surgical patients with neuromuscular scoliosis received the standard spine XR and an ultra-low dose CT scan. Charts were reviewed for etiology of neuromuscular scoliosis and medical co-morbidities. The CT protocol was a high-speed, high-pitch, tube-current modulated acquisition at a fixed tube voltage. Adaptive statistical iterative reconstruction was applied to soft-tissue and bone kernels to mitigate noise. Radiation dose was quantified using reported dose indices (computed tomography dose index (CTDIvol) and dose-length product (DLP)) and effective dose (E), calculated through Monte-Carlo simulation. Statistical analysis was completed using a paired student's T-test (α= 0.05). CT image quality was assessed for its use in preoperative planning and intraoperative navigation using 7D Surgical System Spine Module (7D Surgical, Toronto, Canada). Eight males and seven females were included in the study. Their average age (14±2 years old), preoperative Cobb angle (95±21 degrees), and kyphosis (60±18 degrees) were recorded. One patient was unable to undergo the ultra-low dose CT protocol without sedation due to a co-diagnosis of severe autism. The average XR radiation dose was 0.5±0.3 mSv. Variability in radiographic dose was due to a wide range in patient size, positioning (supine, sitting), number of views, imaging technique and body habitus. Associated CT radiation metrics were CTDIvol = 0.46±0.14 mGy, DLP = 26.2±8.1 mGy.cm and E = 0.6±0.2 mSv. CT radiation variability was due to body habitus and arm orientation. The radiation dose differences between radiographic and CT imaging were not statistically significant. All CT scans had adequate quality for preoperative assessment of pedicle diameter and orientation, obstacles impeding pedicle entry, S2-Alar screw orientation, and intra-operative navigation. “Ultra-low dose” CT scans without sedation were feasible in paediatric patients with neuromuscular scoliosis. The effective dose was similar between the standard preoperative spinal XR and “ultra-low dose” CT scans. The “ultra-low dose” CT scan allowed accurate assessment of the anatomy, aided in pre-operative planning, and allowed intra-operative navigation despite the movement disorders in this patient population


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_I | Pages 84 - 84
1 Mar 2005
Aguado HJ Ruiz-Ibán MA Burgos-Flores J Díaz-Heredia J
Full Access

Introduction and purpose: The relationship between congenital heart disease and the increased prevalence of scoliosis is well known, although the same cannot be said about the etiology of scoliosis in these patients. Although thoracotomy is often associated to scoliosis, median sternotomy has so far not been identified as an etiological agent. he purpose of the study is to determine if patients with congenital heart disease who are subjected to a median sternotomy show a higher prevalence of spine deformities. Materials and methods: A retrospective review is made of patients operated on for congenital heart disease through median sternotomy before the age of 8, assessing the development of spine deformities. Simple chest radiographs of 128 patients were studied once they reached skeletal maturity and it was observed that they presented no spinal or costal deformities before surgery. Results: The prevalence of scoliosis was 34.3%; 16 of these patients (12.5%) had curves of more than 20° and 33 (25.8%) had thoracic kyphosis of less than 20°. Patients operated on before the age of 18 months had a significantly higher risk to develop scoliosis as compared with those treated later (odds ratio: 3.48; p=0.016). The development of scoliosis was not related with the type of cardiac malformation present. Conclusions: There is a high prevalence of scoliosis in patients subjected to a median sternotomy for a congenital heart pathology. The prevalence of scoliosis increases in patients operated on at younger ages


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_II | Pages 111 - 112
1 Feb 2004
Chockalingam N Dangerfield P Ahmed E Rahmatalla A Cochrane T
Full Access

Introduction and Objective: Although the causation and progression of adolescent idiopathic scoliosis (AIS) remains unclear, a recent review has highlighted a series of possible aetiological factors. Additionally, research investigations have indicated that the kinematic differences in various body segments may be a major contributing factor. The value of gait analysis systems employed to measure dynamic back movements in furthering understanding of spinal deformity has also been demonstrated by various studies. Research employing gait measurements have indicated asymmetries in the ground reaction forces and have suggested relationship between these asymmetries, neurological dysfunction and spinal deformity. This investigation, which formed part of a wider comprehensive study, was aimed at identifying asymmetries in lower limb kinematics and pelvic and back movements during level walking in scoliotic subjects that could be related to the spinal deformity. Design and Methodology: The research employed a movement analysis system and a strain gauge force platform to estimate time domain kinetic parameters and other kinematic parameters in the lower extremities, pelvis and back. 16 patients with varying degrees of deformity, scheduled for surgery within a week took part in the study. Results and conclusions: The findings have demonstrated the presence of asymmetries in kinetic parameters in the scoliotic subject and have also served to highlight the value of using kinetic and kinematic parameters in developing the understanding of the pathogenesis and aetiology of scoliosis. In addition, the results have also indicated that the variables identified in the study can be applied to initial screening and surgical evaluation of spinal deformities such as scoliosis. Further studies are being undertaken to validate these findings


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 446 - 446
1 Aug 2008
Indahl A Holm S
Full Access

Introduction: The aetiology of scoliosis is not known. Many different mechanisms have been suggested as playing a part in the development. Dysfunction of the segmental paravertebral muscles have been suggested to have some impact on the condition. It is known that the injection of botulinum toxin type B will paralyse muscles by blocking of the motor endplate. The effect has been shown to last up to three months. The experiment was designed to study if segmental muscles in the thoracic region of the spine in pigs play a role in the development of the spine. Materials and Methods: Six seven days old piglets were used in the experiment. In the lower thoracic region in three levels on the left side the paraspinal muscles were infiltrated with botulinum toxin type B. It was used 10 units of Botox® on each level, a total of 30 units were used on each animal. It was taken care to infiltrate the different small muscles as the toxin does not spread readily to adjacent muscles. The pigs were then left for normal care and development. They all were assessed at four weeks intervals until they were sacrificed three months after initial injection. x-ray were then taken of the spine. Results: During the follow-up there were no visible changes in the alignment of the spine. The piglets developed normally. On x-ray there were no signs of developmental disturbances and we did not see any signs of scoliotic development. If anything, there was the development of a long curvature in the thoracic spine. On examination there was clear atrophy of the segmental muscles in the injected regions. Discussion: This experiment suggests that the development of the spine is not guided by either the presence or absence of muscle activation. The dose of Botox® applied to these small muscles should be more than adequate to stop nearly all muscle activity. The pig has a rapid growth period from seven days to three months. Any changes caused by muscle activation should have been detected in this period. It could be that the effect on fast growing animals is shorter than three months. Nevertheless we still saw muscle atrophy at time of sacrifice


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 405 - 406
1 Oct 2006
Bandi S Chockalingam N Rahmatalla A Dangerfield P Ahmed E Cochrane T
Full Access

Objective: To establish a relationship between the scoliotic curve and the centre of gravity during level walking in patients diagnosed with adolescent idiopathic scoliosis. Background data: There is no established aetiology for adolescent idiopathic scoliosis and the reasons for the progression of the curve are still unknown. But there is an agreement regarding multifactorial nature of the aetiology among many authors. One of the interesting factors suggested is asymmetry in the ground reaction forces during walking and their relation to the deformity, indicated by gait analysis studies. Studies have also indicated that the cause and progression of the deformity in idiopathic scoliosis may be due to kinematic differences in the spine, pelvis and lower limb. If a relation could be established between the scoliotic curve and the centre of gravity, it is possible to draw some conclusions regarding the aetiology. There is no method or study till date which looked at the relation of scoliotic curve with the centre of gravity. Materials and Methods: Patients who were diagnosed with adolescent idiopathic scoliosis were selected. Informed consent was taken for gait analysis. 16 Markers were placed over the lower limb and force plate, using modified Helen Hays set. 5 markers were placed over the surface landmarks of selected spinous processes (C7, T6, T12, L3 and S2). Ground reaction forces and motion data were analysed, using APAS gait system and the lines of vectors were developed and correlated with the marker over the second sacral spinous process. Results: With the help of this method we were able to establish a relationship between the scoliotic curve and centre of gravity line. These in turn were expressed in terms of changes in the moment in relation to the midline of the coronal plane. The results indicated that the changes were proportional to the severity of the scoliotic curve. Conclusion: We present a new method of establishing the relation of scoliotic curve with the ground reaction force and the centre of gravity. Initial results obtained from this method indicate the asymmetries in the deviation of the centre of gravity line in relation to the curve, during walking. Ongoing studies based on this method, will help to understand the pathogenesis and aetiology of scoliosis on a biomechanical basis which can help in developing new treatment modalities and efficient management of these patients


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_II | Pages 172 - 172
1 Feb 2004
Grivas TB Michas K Vasiliadis E Maziotou C Karathanou S Polyzois VD
Full Access

1. Introduction. A significant correlation between handedness and laterality of the curve in scoliotic children is reported in the literature. This correlation is implicating cortical function as an aetiologic factor for scoliosis, (Goldberg and Dowling 1990). The truncal asymmetry expressed as a hump, is the sign at the presence of which there is a suspicion of a scoliotic curve. The above issue stimulated the search of existence of a possible correlation between handedness and the increasing truncal asymmetry, the existence of which represents a risk factor for development of scoliosis. Thus the aim of this study is the appraisal of the correlation of the existence of a truncal asymmetry as it is checked by the use of a scoliometer during the forward bending test and the handedness in schoolmates who were screened at school for scoliosis. 2. Material and Method. 2.1 The examined children. 4345 students (2183 girls and 2158 boys), 6 – 18 years of age were examined during the school-screening program for scoliosis. 2.2 The measurements. A protocol with a checklist is filled for each student in which handedness and truncal asymmetry is included. The probability of existence of scoliosis in the child and the recommendation for further clinical and radiological assessment at hospital is based on the amount of the recorded truncal asymmetry. The sitting and standing forward bending test is performed using the Pruijs scoliometer, on which reading ≥7° is a threshold for recommendation for reexamination. Truncal asymmetry was recorded for thoracic, thoracolumbar and lumbar region. 2.3 The statistical analysis. The techniques used for the study of the sample of children included cross tabulation and ÷2. 3. Results. The statistical analysis revealed that there is no statistical difference for handedness between boys and girls therefore the correlation between handedness and truncal asymmetry was performed for both sexes together. 91% children were right-handed (1932 boys and 1996 girls), while 9% left-handed (218 boys and 169 girls) respectively. A significant statistical correlation of truncal asymmetry and handedness was found both in boys and girls at thoracic (p < 0.022) and thoracolumbar (p< 0.027), but not at the lumbar region. 4. Discussion. These findings show that there is significant correlation of truncal asymmetry and the dominant brain hemisphere in terms of handedness, in children who are entitled at risk to develop scoliosis. Thus, the correlation of the handedness and the truncal asymmetry (the scoliosis convex) is present not only at scoliotic children but and at those being at risk that is before the development of the disease. These findings correlate cortical function and the truncal asymmetry, probably as a prodrome state of scoliosis and it is of aetiologic importance


Bone & Joint Open
Vol. 1, Issue 3 | Pages 19 - 28
3 Mar 2020
Tsirikos AI Roberts SB Bhatti E

Aims

Severe spinal deformity in growing patients often requires surgical management. We describe the incidence of spinal deformity surgery in a National Health Service.

Methods

Descriptive study of prospectively collected data. Clinical data of all patients undergoing surgery for spinal deformity between 2005 and 2018 was collected, compared to the demographics of the national population, and analyzed by underlying aetiology.