Introduction. Anterior cervical decompression and fusion (ACDF) is considered a standard surgical treatment to degenerative discogenic diseases. Lately, the question arises whether or not ACDF significantly influences the progression of adjacent disc degeneration (ADD). The etiology of ADD is obscure and it has not been fully understood whether ADD is a consequence of fusion or it represents the aging pathway of the degenerative cervical process, thus making it a controversial topic [1-3]. There have been several discussions about the possibility of ACDF altering biomechanical conditions at adjacent segments, therefore resulting in increased load and excessive motion [3,4]. The purpose of this study was to compare the cervical segmental motion pre- and post-ACDF using novel 3D analytical techniques. Methods. Nine patients (2F/7M, mean age: 54.1 years, range 36–76 y.o.) underwent ACDF due to symptomatic cervical degenerative discogenic disease. One-level ACDF was performed in 4 patients, whereas 2-level ACDF was done in five, using cylindrical titanium porous cage implants. Pre- and post (postoperative periods ranged from 11-months, 25 days to 12-months, 22 days, mean postoperative period: 12.09 months) surgery, dynamic-CT examinations were conducted in neutral, flexion and extension positions. Subject-based 3D CT models were created for segmental motion analysis (Fig. 1). Six-degrees-of-freedom 3D segmental movements were analyzed using a validated Volume-Merge methods (accuracy: 0.1 mm in translation, 0.2°in rotation) [5]. The segmental translation was evaluated by the segmental translations of gravity centers of endplates (Fig. 2). Disc-height distribution was measured using a custom-written Visual C++ routine implementing a lease-distance calculation algorithm. The mean translation distance was calculated for the each
Aim: To determine the incidence of
Introduction Disc replacement surgery is being investigated as an alternative to spinal fusion surgery in the hope that maintaining segment spinal motion will not only relieve pain, but also prevent or reduce the likelihood of symptomatic adjacent segment degeneration that is believed to be a consequence of fusion surgery. The aim of this study was to identify evidence in the medical literature that indicates whether or not spinal fusion surgery increases the likelihood of symptomatic adjacent segment degeneration compared to disc replacement surgery or natural history. Methods A search of the Cochrane Controlled Trials Register, Medline and reference lists of retrieved articles was performed. Search terms included arthroplasty replacement, spinal fusion, prognosis, controlled clinical trials and cohort studies, Studies were included if abstracts were available electronically, were published in the English language before1/3/2005 and involved humans. Levels of evidence were determined using the Oxford Centre for Evidence-Based Medicine criteria (. http://www.cebm.net/levels of evidence.asp. ). Discussion The majority of identified studies were case series of patients presenting with
Aim. A retrospective review of the management of
Purpose: The objectives of this study were to determine the effect of posterior instrumentation extension and/or cement augmentation on immediate stabilization of the instrumented level and biomechanical changes adjacent to the spinal instrumentation. Methods: This study was designed for repeated measures comparison, using 12 T9-L3 human cadaveric segments, to test the effects of posterior rod extension and cement augmentation following T11 corpectomy. The spine was stabilized with a vertebral body replacement device and with posterior instrumentation from T10 to T12. The T12 pedicle tracts were over-drilled to simulate loosened screws in an osteoporotic spine. The T10 screws were not over-drilled but cemented so as to keep the superior segments constant. Flexibility tests were first carried out on the intact specimen, followed by 3 randomized surgical conditions without cement and lastly the 3 conditions after cement augmentation. The 3 conditions were: 1) no posterior extension rods to L1, 2) flexible extension rods, and 3) rigid extension rods. A combined testing/analysis protocol that used both the traditional flexibility method and a hybrid technique [Panjabi 2005] was adopted. Flexibility tests with +/−5 Nm pure moments in flexion-extension, axial rotation and lateral bending were carried out and vertebral bodies’ motion in 3-D were collected. Two-way repeated measures ANOVA analyses were carried out on ROM between cement augmentation (factor 1) and the posterior rod extension (factor 2) on each flexibility test direction. An alpha of 0.05 was chosen. Newman-Keuls post-hoc analyses were carried out to compare between surgical techniques. Results: Using the flexibility protocol, a reduction in ROMs at the destabilized level was observed with cement augmentation of screws or extension with rigid or flexible posterior rods to
Aims. The aims of this study were first, to determine if adding fusion to a decompression of the lumbar spine for spinal stenosis decreases the rate of radiological restenosis and/or proximal
The primary objective is to compare revision rates for lumbar disc replacement (LDR) and fusion at the same or
Cervical spinal arthrodesis is the standard of care for the treatment of spinal diseases induced neck pain. However, adjacent segment disease (ASD) is the primary postoperative complication, which draws great concerns. At present, controversy still exists for the etiology of ASD. Knowledge of cervical spinal loading pattern after cervical spinal arthrodesis is proposed to be the key to answer these questions. Musculoskeletal (MSK) multi-body dynamics (MBD) models have an opportunity to obtain spinal loading that is very difficult to directly measure in vivo. In present study, a previously validated cervical spine MSK MBD model was developed for simulating cervical spine after single-level anterior arthrodesis at C5-C6 disc level. In this cervical spine model, postoperative sagittal alignment and spine rhythms of each disc level, different from normal healthy subject, were both taken into account. Moreover, the biomechanical properties of facet joints of
Introduction. The biomechanical behavior of lumbar spine instrumentation is critical in understanding its efficacy and durability in clinical practice. In this study, we aim to compare the biomechanics of the lumbar spine instrumented with single-level posterior rod and screw systems employing two distinct screw designs: paddle screw versus conventional screw system. Method. A fully cadaveric-validated 3D ligamentous model of the lumbopelvic spine served as the foundation for our comparative biomechanical analysis. 1. To simulate instrumentation, the intact spine was modified at the L4L5 level, employing either paddle screws or standard pedicle screws (SPS). The implants were composed of Ti-6AL-4V. Fixation at the S1 ensured consistency across loading scenarios. Loading conditions included a 400-N compressive load combined with a 10 N.m pure bending moment at the level of L1, replicating physiological motions of flexion-extension, lateral bending and axial rotation. We extracted data across various scenarios, focusing on the segmental range of motion at both implanted and
Low back pain is the single most common cause for disability in individuals aged 45 years or younger, it carries tremendous weight in socioeconomic considerations. Degenerative aging of the structural components of the spine can be associated with genetic aspects, lifetime of tissue exposure to mechanical stress & loads and environmental factors. Mechanical consequences of the disc degenerative include loss of disc height, segment instability and increase the load on facets joints. All these can lead to degenerative changes and osteophytes that can narrow the spinal canal. Surgery is indicated in patients with spinal stenosis who have intractable pain, altered quality of life, substantially diminished functional capacity, failed non-surgical treatment and are not candidates for non-surgical treatment. The aim was to determine the reasons for refusal of surgery in patients with established degenerative lumber spine pathology eligible for surgery. All patients meeting the study criteria, patients older than 18 years, patients with both clinical and radiological established symptomatic degenerative lumbar spine pathology and patients eligible for surgery but refusing it were recruited. Questionnaire used to investigate reasons why they are refusing surgery. Results 59 were recruited, fifty-one (86.4 %) females and eight (13.6 %) males. Twenty (33.8 %) were between the age of 51 and 60 years, followed by nineteen (32.2 %) between 61 and 70 years, and fourteen (23.7 %) between 71 and 80 years. 43 (72 %) patients had lumber spondylosis complicated by lumber spine stenosis, followed by nine (15.2 %) with lumbar spine spondylolisthesis and four (6.7 %) had
INTRODUCTION. Several clinical studies demonstrated long-term adjacent-level effects after implantation of spinal fusion devices[1]. These effects have been reported as adjacent joint degeneration and the development of new symptoms correlating with adjacent segment degeneration[2] and the trend has therefore gone to motion preservation devices; however, these effects have not been understood very well and have not been investigated thoroughly[3]. The aim of this study is to investigate the effect of varying the stiffness of spinal fusion devices on the
Aim. The purpose of this study is to compare the pre and post-operative magnetic resonance image clarity of titanium and PEEK based cervical arthroplasty devices at the level of implantation and
Background: Cervical myelopathy and radiculopathy has been treated commonly with anterior cervical decompression and fusion with autologous bone graft and anterior cervical plating. Long term results have shown excellent pain relief and 73%–90% fusion rates. However, the development of late adjacent-level disease has been reported following anterior cervical arthrodesis which recently have been correlated to clinical findings. The Bryan disc arthroplasty device was developed to preserve the kinematics of the functional spine unit thus preventing
Background: The X stop interspinous process decompression device has been used effectively in symptomatic lumbar spinal stenosis. It holds the spinal segment in a flexed position maintaining increase in dural sac and foraminal areas. Aim: To study the effect of X-stop on the lumbar spine kinematics at 24 months post operatively at the instrumented and
Aim: To study the effect of X-stop interspinous decompression device on the lumbar spine kinematics at 6 and 24 months post operatively at the instrumented and
Introduction. The ESP prosthesis is a one-piece deformable but cohesive interbody spacer. it provides 6 full degrees of freedom about the 3 axes including shock absorption (fig1). The prosthesis geometry allows limited rotation and translation with resistance to motion (elastic return property) aimed at avoiding overload of the posterior facets. The rotation center can vary freely during motion in this “silentblock” implant. It thus differs substantially from current prostheses. Material and methods. Surgeries were performed by 2 senior surgeons in 54 women and 34 men (1level in 72 cases, 2 levels in 3 cases, hybrid construct in 13 cases). Average age was 42 (SD: 7). Average BMI was 24.2kg/m2 (SD: 3,4). Clinical data and X-rays were collected at the preoperative time and at 3, 6, 12, 24, and 60 months post-op. The analysis was performed by a single observer independent from the selection of patients and from the surgical procedure. The radiological analysis at 60 months follow-up could be realized in only 76 cases because the quality of the dynamic Xrays was not sufficient in 12 patients. We measured the ROM and the location of mean center of rotation (MCR) of the implanted and
Following studies in 2007-08 comparing cervical discs devices, satisfaction and accuracy of operated and
INTRODUCTION. Lumbar total disc replacement (TDR) is an alternative treatment to avoid fusion related adverse events, specifically adjacent segment disease. New generation of elastomeric non-articulating devices have been developed to more effectively replicate the shock absorption and flexural stiffness of native disc. This study reports 5 years clinical and radiographic outcomes, range of motion and position of the center of rotation after a viscoelastic TDR. Material and methods. This prospective observational cohort study included 61 consecutive patients with monosegmental TDR. We selected patients with intermediate functional activity according to Baecke score. Hybrid constructs had been excluded. Only cases with complete clinical and radiological follow-up at 3, 6, 12, 24 and 60 months were included. Mean age at the time of surgery was 42.8 +7.7 years-old (27–60) and mean BMI was 24.2 kg/m² +3.4 (18–33). TDR level was L5-S1 in 39 cases and L4-L5 in 22 cases. The clinical evaluation was based on Visual Analog Scale (VAS) for pain, Oswestry Disability Index (ODI) score, Short Form-36 (SF36) including physical component summary (PCS) and mental component summary (MCS) and General Health Questionnaire GHQ28. The radiological outcomes were range of motion and position of the center of rotation at the index and the
Introduction This in-vitro biomechanical study was undertaken to compare the multi-directional flexibility kinematics of single versus multi-level lumbar Charité reconstructions and determine the optimal biomechanical method for surgical revision – posterior instrumentation alone or circumferential spinal arthrodesis. Methods A total of seven human cadaveric lumbosacral spines (L1 to Sacrum) were utilized in this investigation and biomechanically evaluated under the following L4-L5 reconstruction conditions: 1) Intact Spine; 2) Diskectomy Alone, 3) Charité, 4) Charité + Pedicle Screws, 5) Two Level Charité (L4-S1), 6) Two Level Charité + Pedicle Screws (L4-S1), 7) Charité L4-L5 with Pedicle Screws and Femoral Ring Allograft (L5-S1) and 8) Pedicle Screws and Femoral Ring Allograft (L4-S1). Multi-directional flexibility testing utilized the Panjabi Hybrid Testing protocol, which includes pure moments for the intact condition with the overall spinal motion replicated under displacement control for subsequent reconstructions. Hence, changes in
Purpose: Perispinal core muscle strength has been theorized to be an important component in the pathogenesis of back pain. Recent research has demonstrated a strong association between preoperative perispinal musculature, adjusted for fatty infiltration and prospective outcomes and improvements in back pain in patients undergoing lumbar laminectomy without fusion. The purpose of this study is to determine if a similar relationship exists in patients undergoing elective posterior lumbar fusion and decompression (PLFD) surgery. Method: A retrospective observational study of prospectively collected outcomes data was conducted in which pre-operative function and patient variables of those undergoing PLFD were derived from a functional status questionnaire and medical records. ImageJ Digital Imaging Software was utilized to measure the total (CSA) and percentage of fatty infiltration of the psoas, multifidus, and erector spinae muscles in pre-operative L4 axial CT images. Pre-operative and post-operative lateral images were evaluated for degree of post-operative