Advertisement for orthosearch.org.uk
Results 1 - 20 of 46
Results per page:
Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_I | Pages 12 - 12
1 Mar 2005
Morrish A Hoffman E
Full Access

In a prospective study we assessed the accuracy of 3D-CT in defining the acetabular deficiency in developmental dysplasia of the hip (DDH), comparing pre-operative 3D-CT with plain radiographs, intraoperative stability testing and intraoperative acetabular morphology. Twenty children (25 hips) with DDH who had open reduction and/or pelvic osteotomy from 1999 to 2001 were studied. On 3C-CT the morphology of the deficiency was described as normal, anterolateral deficient (overlapping shadows), lateral (increased acetabular index only) and global (double acetabulum). At open reduction, the position in which the hip was most stable with axial loading was assessed (Zadeh and Caterall, 2001). The surgeon’s assessment of the acetabular morphology intraoperatively was the standard against which the other modalities were tested. One hip was normal, five had a global and 19 an anterolateral deficiency. 3D-CT correlated well with the acetabular morphology (84%). Plain radiography correlated poorly, especially with the global type (60%). Mid-superior appearance on 3D-CT and lateral appearance on plain radiograph equated with an anterolateral deficiency morphologically. In the global type the hip was unstable in all positions, while the anterolateral type, while in the anterolateral type the hip was always stable in flexion and abduction and in only 31% of hips stable also in abduction and internal rotation. The mean age at surgery was 3 years (1 to 7). The one hip with a normal acetabulum required open reduction only, the five global types an acetabuloplasty (Tonnis), and the 19 hips with anterolateral deficiency a redirectional (Salter) osteotomy. 3D-CT is helpful in appropriate osteotomy for a specific type of acetabular deficiency in DDH


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 30 - 30
1 Jan 2016
Matsumoto K Tamaki T Miura Y Oinuma K Shiratsuchi H
Full Access

Background. In total hip arthroplasty (THA), preservation of the short external rotator muscles are considered to be important because they contribute to joint stability and prevent postoperative dislocation. Recently, we reported that there are bony impressions on the greater trochanter that indicate the insertions of the short external rotator tendons. In this study, we reported a method to visualize the bony impressions using preoperative CT images, and evaluate the reliability and accuracy of this method. Methods. Thirty-three hips from 24 consecutive patients undergoing THA were enrolled. The mean age was 65.3 years. Preoperative diagnoses included hip osteoarthritis in 27 hips, rheumatoid arthritis in 4 hips, idiopathic osteonecrosis in 1 hip, femoral neck fracture in 1 hip. Preoperative CT of the hip region was obtained and three-dimensional (3D) reconstruction of the greater trochanter was performed to visualize the bony impressions, that we called the obturator tendon attachment (OTA), indicating the attachment area of the obturator internus and externus muscles. Results. 3D reconstructed images of the greater trochanter were observed from medial side at 50 degrees of external hip rotation and 20 degrees of abduction (OTA view). Using OTA view, the bony impressions indicating the attachment area of the obturator internus and externus muscles can be identified in all hips. Conclusions. The bony impressions indicating the attachment area of the obturator internus and externus muscles can be visualized using preoperative 3D-CT. We considered that the findings in the present study could be helpful for surgery because the alignment of the short external rotator muscles can be estimated preoperatively and the extent of the damage to the OA during the rasping or reaming can be estimated


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 128 - 128
1 Jan 2016
Kubo K Shishido T Yokoyama T Katoh D Mizuochi J Morishima M Tateiwa T Masaoka T Yamamoto K
Full Access

[Background]

Factors determining improvement of the long-term outcome of total knee arthroplasty include accurate reproduction of lower limb alignment. To acquire appropriate lower limb alignment, tibial component rotation is an important element for outcomes. We usually determine the tibial component rotation using the anatomical rotaional landmark of the proximal tibia and range of motion technique. In addition we followed by confirmation of overall lower limb alignment referring to the distal tibial index. When the tibia have a rotational mismatch between its proximal and distal AP axis, a larger error of the distal tibial index than those of other rotational landmark is of concern. The purpose of this study is to evaluate the reliability of the distal tibial AP axis as a reference axis of tibial compornent rotation in the intraoperative setting.

[Subjects and Methods]

The 86 patients (104 knees) with osteoarthritis of the knee who underwent primary TKA were evaluated with use of computerized tomography scans. A 3D images of the proximal tibial and ankle joint surfaces and foot were prepared, and the reference axis was set. In measurement, the images and reference axes were projected on the same plane. We measured the angle caluculated by the proximal and distal tibial AP axes (torsion angle) in preoperative 3D CT images. As a proximal tibial AP reference axis, AP-1 is a line connecting the medial margin of the tibial tubercle and Middle of the PCL attachment site and AP-2 is a line connecting the 1/3 medial site of the tibial tubercle and center of the PCL attachment site. As a distal tibial AP reference axis, D3 is a line connecting the anteroposterior middle point of the talus, D4 is a perpendicular line of transmalleoler axes, and D5 is the second metatarsal bone axis.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_5 | Pages 4 - 4
1 Feb 2013
Cowie J McKenzie S Dempster N Robinson C
Full Access

First-time anterior dislocation of the shoulder is associated with the development of recurrent instability. It is recognised that patients with recurrent instability often have osseous defects. Using 3D computerised tomography (3DCT) it is possible to quantify these defects. Whether these defects are present after the primary dislocation or occur progressively from multiple dislocations is unclear. We correlated the presence of Hill-Sachs lesions and anterior glenoid bone loss with evidence of recurrent dislocation and clinical outcomes.

78 patients were followed up for two years. All underwent a 3DCT within a week of injury. Standardised images of the humeral head and glenoid were produced. Using standardised digital techniques bone loss was measured.

39% of the patients developed further instability. Average Hill-Sachs circumferential length = 15.23%. Average Hill-Sachs surface area = 5.53%. The length and surface area of the Hill-Sachs lesions were significantly associated with further instability. (p=0.019 and p=0.003). Average en face glenoid surface area loss=1.30% with no association to instability (p=0.685). There was poor correlation between the size of the glenoid lesion and the size of the Hill-Sachs lesion.

Results showed that age and increasing size of the Hill-Sachs lesions result in a higher rate of instability. Interestingly glenoid bone loss was relatively low and did not predict recurrent instability. The size of the Hill-Sachs lesion does not have a linear relationship with glenoid bone loss. Further work defining the morphology of the Hill-Sachs lesion and its engagement with a glenoid defect is required.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 467 - 468
1 Nov 2011
Kawasaki Y Egawa H Yasui N
Full Access

Vascular injury associated with hip surgery is a rare but serious complication. Hip surgeons need to understand the vascular anatomy around the acetabulum to avoid vascular injury. The aim of this study was to visualize the pelvic vascular structures thorough the osseous acetabulum using 3DCT angiography and to describe the three-dimensional relationship between the vessels and the acetabulum. A total of 100 patients who took 3DCT with intravenous contrast for intra-pelvic neoplastic disease were randomly chosen. Those patients with hip disease were excluded. Three examinations were performed.

First, dual-phase helical CT data were transferred to a workstation (M900;Zio,Tokyo,Japan) and 3D visualizations of the vascular structures through the pelvis were reconstructed.

Second, location of the external iliac, femoral and obturator vessels were investigated in axial CT images. Finally, influence of the age factor on the anatomical courses of the external iliac vessels was assessed.

Reconstructed 3D images were able to provide spatial relationship between courses of the pelvic vascular structures and the acetabulum. We could visualize the pelvic vascular structures thorough the pelvis from similar operative viewpoints. Axial CT examinations revealed the external iliac vessels locate very closely to the pelvis as they exit the pelvic cavity.

Especially, the left side vessels and vein were closer to the pelvis. The femoral vessels became closer to the acetabular edge with traveling distally. At the distal half of the acetabulum, the femoral vessels located just ventrally to the anterior acetabular edge. The obturator vessels courses inferiorly along the quadrilateral surface behind the acetabulum, they became very close to the inner cortex or the acetabulum. Straight type of the anatomical course of the external iliac vessels was the most common configuration in young patients, curved and the tortuous types were present in older patients.

The results of this study are useful to understand the anatomical orientation of the vessels around the acetabulum. To avoid vascular injuries in hip surgery, knowledge of the vascular orientation is of critical importance for the hip surgeon.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_5 | Pages 24 - 24
1 Jul 2020
Di Laura A Henckel J Belzunce M Hothi H Hart A
Full Access

Introduction. The achieved anteversion of uncemented stems is to a large extent limited by the internal anatomy of the bone. A better understanding of this has recently become an unmet need because of the increased use of uncemented stems. We aimed to assess plan compliance in six degrees of freedom to evaluate the accuracy of PSI and guides for stem positioning in primary THAs. Materials and Methods. We prospectively collected 3D plans generated from preoperative CTs of 30 consecutive THAs (17 left and 13 right hips), in 29 patients with OA, consisting of 16 males and 13 females (median age 68 years, range 46–83 years). A single CT-based planning system and cementless type of implant were used. Post operatively, all patients had a CT scan which was reconstructed using state-of-the-art software solution: the plan and CT reconstruction models were. Outcome measures: 1) discrepancy between planned and achieved stem orientation angles Fig.2&3; 2) clinical outcome. Results. 1) The mean (±SD) discrepancy was low for: Varus-valgus −1.1 ± 1.4 deg (IQR −2.2 – 0.3 deg); Anterior-posterior 0.1 ± 1.6 deg (IQR −0.7 – 1.3 deg). The discrepancy was higher for femoral version −1.4 ± 8.2 deg (IQR −8.3 – 7.2 deg). 3D-CT planning correctly predicted sizes in 93% of the femoral components. 2) There was no intra-operative fracture, no case showed evidence of early periprosthetic osseous injury. Discussion. Surgeons and engineers should be cautious with their expectation of achieving the planned femoral stem version of an uncemented femoral stem from the pre-operative 3D-CT plan. Conclusion. This is the first study to 3D-mensionally evaluate 3D-printed patient-specific instrumentation and guides for achieved femoral stem component orientation vis-à-vis to the plan. The tools allow accurate implant orientation, however there is still potential for improvement. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_11 | Pages 37 - 37
1 Aug 2018
Baek S Lee J Lee YS Kim S
Full Access

We evaluated (1) wear rate, (2) prevalence and volume of osteolysis using 3D-CT scan, (3) other bearing-related complications, (4) HHS and survivorship free from revision at 15 years after THA using first-generation XLPE (1G XLPE). One-hundred sixty THAs were evaluated regarding bearing-related complication, HHS and survivorship. Among them, 112 hips underwent 3D-CT to analyze wear rate and osteolysis. All THAs were performed by single surgeon using cup of identical design, a 28-mm metal head and 1G XLPE (10 Mrad). Average age were 57 years and mean follow-up was 15.2 years. 3D-CT scan was performed at average of 13.0 years. Clinical evaluation included HHS and radiographic analysis was performed regarding stem alignment, cup anteversion and inclination angle, component stability, wear rate and osteolysis. Wear was measured using digital software. The prevalence and volume of osteolysis were also evaluated. Complications included XLPE dissociation/rim fracture, dislocation, periprosthetic fracture, infection, HO and any revision. Survivorship free from revision at 15 years was estimated. Average inclination and anteversion angle of cups were 40.7° and 20.6°. Mean stem alignment was 0.1° valgus. Average bedding-in and annual wear rate wear rate was 0.085 mm and 0.025 mm/yr. Eleven hips (10%) demonstrated osteolysis; pelvic osteolysis with average volume of 1.4 cm. 3. in six and femoral osteolysis with mean size of 0.4 cm. 2. in seven hips. Of 160 THAs, 5 hips (3%) dislocated. Overall, bearing-related complications occurred in 16 hips (10%). Other complications included postoperative periprosthetic fracture in 4 (3%), infection and HO in 3 hips, respectively. No hip demonstrated loosening, XLPE rim fracture/dissociation. Seven THAs (4%) were revised; recurrent dislocation in 5 and periprosthetic joint infection in 2 hips. Average HHS at last follow-up improved from 47.7 preoperatively to 91.2 points (p<0.001). Estimated survivorship free from revision at 15 years was 95.6 %. THA using 1G XLPE demonstrated low wear rate as well as low incidence of osteolysis at average follow-up of fifteen years. Longer-term studies will be necessary to determine if XLPE will continue to demonstrate this improved osteolysis characteristics


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 242 - 242
1 Sep 2012
Shoda E Ouchi K Maruyama S Suzuki A Kitada S
Full Access

INTRODUCTION. Short femoral nail is the most popular instrumentation for femoral trochanteric fractures. PFNA is in widely use and good results are reported. In these papers, fracture classification and evaluation of surgical results were based on plain X-ray. However, some cases of delayed union, non-union, and blade cut out showed no critical problems in immediate postoperative X-ray. Cause of these complications was not able to solve in X-ray analysis. CT scan provides more information about fracture pattern and position of nail and blade. CT analysis is likely to solve the cause of these complications. MATERIALS & METHODS. 20 cases of 36 femoral trochanteric fractures treated with PFNA-II were evaluated by CT scan (pre and post surgery). Four males and 16 females, and average age at surgery was 80.5 (65–100). Eleven cases were A1 fracture and 9 cases were A2 fracture in AO classification. Nail insertion hole was made by custom made Hollow Reamer. Fracture classification with 3D-CT (Nakano's classification), position of nail insertion hole (relationship between neck or head), and postoperative evaluation with 3D-CT insertion part of nail and blade were investigated. RESULTS. Nakano classified femoral trochanteric fracture into 7 types in 3D-CT. Two subtype in 2 part fracture, 4 subtype in 3 part fracture and 4part fracture. Seven cases were two part fracture, 11 were three part, and 2 were four part in our series. Five cases of 11 in 3 part fracture was considered unstable type. Nail insertion hole of six cases was made posteriory to the connecting line between neck center and head center. Fracture line of greater trochnater in lateral wall opened in 4 cases because of nail insertion. DISCUSSION. Femoral trochanteric fracture was classified by Evans classification or AO classification. However, it is very difficult to classify the fracture by plain X-P. Classification with 3D-CT is very usefull to distinguish which the fracture is stable or unstable. CT analysis will solve the postoperative complications in stable type in X-P classification


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 107 - 107
1 Feb 2017
Eftekhary N Vigdorchik J Yemin A Bloom M Gyftopoulos S
Full Access

Introduction. In the evaluation of patients with pre-arthritic hip disorders, making the correct diagnosis and identifying the underlying bone pathology is of upmost importance to achieve optimal patient outcomes. 3-dimensional imaging adds information for proper preoperative planning. CT scans have become the gold standard for this, but with the associated risk of radiation exposure to this generally younger patient cohort. Purpose. To determine if 3D-MR reconstructions of the hip can be used to accurately demonstrate femoral and acetabular morphology in the setting of femoroacetabular impingement (FAI) and development dysplasia of the hip (DDH) that is comparable to CT imaging. Materials and Methods. We performed a retrospective review of 14 consecutive patients with a diagnosis of FAI or DDH that underwent both CT and MRI scans of the same hip with 3D reconstructions. 2 fellowship trained musculoskeletal radiologists reviewed all scans, and a fellowship trained hip preservation surgeon separately reviewed scans for relevant surgical parameters. All were blinded to the patients' clinical history. The 3D reconstructions were evaluated by radiologists for the presence of a CAM lesion and acetabular retroversion, while the hip preservation surgeon also evaluated CAM extent using a clock face convention of a right hip, location of femoral head blood supply, and morphological anterior inferior iliac spine (AIIS) variant. The findings on the 3D CT reconstructions were considered the reference standard. Results. Of 14 patients, there were 9 females and 5 males with a mean age 32 (range 15–42). There was no difference in the ability of MRI to detect the presence of a CAM lesion (100% agreement between 3D-MR and 3D-CT, p=1), AIIS morphology (p=1, mode=type 1 variant), or acetabular retroversion (85.7%, p=0.5). 3D-MR had a sensitivity and specificity of 100 in detecting a CAM lesion relative to 3D-CT. Four CT studies were inadequate to adequately evaluate for presence of a CAM. Five CT studies were inadequate to evaluate for location of the femoral head vessels, while MRI was able to determine location in those patients. In the 10 remaining patients for presence of CAM, and nine patients for femoral head vessel location, there was no statistically significant difference between 3D-MR and 3D-CT in determining the location of CAM lesion on a clock face (p=0.8, mean MRI = 12:54, mean CT: 12:51, SD = 66 mins MR, 81 mins CT) or in determining vessel location (p=0.4, MR mean 11:23, CT mean 11:36, SD 33 mins for both). Conclusion. 3D MRI reconstructions are as accurate as 3D CT reconstructions in evaluating osseous morphology of the hip, and may be superior to CT in determining other certain clinically relevant hip parameters. 3D-MR was equally useful in determining the presence and extent of a CAM lesion, acetabular retroversion, and AIIS morphologic variant, and more useful than 3D CT in determining location of the femoral head vessels. In evaluating FAI or hip dysplasia, a 3D-MR study is sufficient to evaluate both soft tissue and osseous anatomy, sparing the need for a 3D CT scan and its associated radiation exposure and cost


Bone & Joint 360
Vol. 1, Issue 4 | Pages 29 - 31
1 Aug 2012

The August 2012 Children’s orthopaedics Roundup. 360. looks at: whether 3D-CT gives a better idea of coverage than plain radiographs; forearm fractures after trampolining accidents; forearm fractures and the Rush pin; the fractured distal radius; elastic stable intramedullary nailing for long-bone fractures; aponeurotic recession for the equinus foot; the torn medial patellofemoral ligament and the adductor tubercle; slipped capital femoral epiphysis; paediatric wrist arthroscopy; and Pirani scores and clubfoot


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 21 - 21
1 Sep 2012
Davda K Smyth N Hart A Cobb J
Full Access

The radiographic analysis of over 5000 metal on metal (MoM) hips using Ein Bild Roentgen Analyse (EBRA) software have been recently published in an attempt to determine the influence of cup orientation on bearing function. The validation of this software relies one study, conducted in a phantom pelvis without a femoral head in situ. Three dimensional computed tomographic (3D-CT) has been shown to be more accurate for hip and knee arthroplasty than plain radiographs for measurements of component orientation and position. The accuracy of EBRA when compared to 3D-CT for MoM hips specifically is unclear. We measured the cup orientation of 96 large diameter MoM hips using EBRA analysis of plain radiographs and compared this to 3D-CT. All measurements were made using the radiographic definition of cup orientation. The mean difference in version between the two imaging modalities was 8°; with wide limits of agreement of −21.2° and +5.6°. Three retroverted cups were not detected by EBRA. The mean difference in inclination values was 0.3°, but there was up to 9°difference between imaging modalities. When measured by 3D CT, 64% of hips were within a 10° safe zone around 45° inclination and 20° version, compared to only 24% when measured by EBRA (Fishers Exact test, p< 0.0001). The measurement of cup orientation of MoM hips using EBRA software is insufficiently accurate, particularly for the assessment of cup version. The cup rim is obscured by the large diameter femoral head on plain radiographs. Research studies using EBRA analysis for version have limited value if accuracy of more than 20 degrees is required to draw conclusions. This software may not be suitable to measure the performance of a device or surgeon. The limitations of EBRA can be overcome, if 3D-CT with an extended Hounsfield scale for data capture is used


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 342 - 342
1 Mar 2013
Suenaga N Oizumi N Miyoshi N Yoshioka C
Full Access

Purpose. In total elbow arthroplasty (TEA), especially for elbows with condyle defect due to rheumatoid arthritis or trauma, determination of rotation alignment of implants is often difficult. To develop a navigation system for TEA, selecting bony landmarks that can be identified intraoperatively is important. Therefore, we developed a new roentgen free navigation system such as special alignment jigs for TEA based on CT data of normal elbows. The aim of this study was to evaluate alignments of implants after MIS-TEA using the new systems. And also, we reported that 6 bony landmarks on the elbow showed small variability in normal elbows by CT examinations and were considered to be usable as intraoperative landmarks for determining rotational position of implants last year. Especially in RA elbow, posterior aspect of humerus and ulnar aspect of proximal part of ulna were able to be identified even if there is a large bone defect that extends to the lateral or/and medial epicondyle. We used a new roentgen free navigation system in TEA with using Solar elbow from 2009. The aim of this study was to evaluate alignments of implants after MIS-TEA using the new systems by CT examinations. MATERIALS AND METHODS. For determination of alignment and anatomical landmarks to develop the jigs, 3D-CT data of 11 normal elbows was investigated. The posterior aspect of humeral shaft and ulnar aspect of proximal ulna were selected as bony landmarks. Because these can be identified intraoperatively and remain in elbows with extensive bone loss. MIS-TEA with Solar Elbow (Stryker) using these new systems were investigated with postoperative 3D-CT in 14 elbows of 13 patients. Their average age was 68.8 years old. Basic diseases were 10 rheumatoid arthritis and 4 distal humerus injuries. The alignments of humeral and ulnar component were measured on postoperative 3D-CT. RESULTS. Rotational alignment (humerus / ulna) was pronation 6.8° ± 5.7° / pronation 4.6° ± 9.1°; frontal alignment was valgus 0.1° ± 2.7° / valgus 0.1° ± 3.7°; and sagittal alignment was extension 0.6° ± 3.0° / extension 8.9° ± 2.5°. In condyle-defect group (n=5), comparable alignment with condyle-preserved group was obtained. DISCUSSION. The new systems were effective in determining intraoperative alignment even in elbows with extensive bone defect. Extension alignment of the ulna component is because the short component of Solar Elbow was placed along the center axis of the proximal ulna, which inclines in the extension direction relative to the axis of distal ulna


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 75 - 75
1 Jan 2016
Tomizawa K Tamai K Akutsu M Yano Y Yoshikawa K Sukegawa T Yamaguchi Y Taneichi H
Full Access

Objectives. Our principle is to bring the socket back to the true acetabulum position. A large structural bone graft is required for severe subluxation. We obtained good long-term results with structural bone grafts. It is necessary to evaluate the bone graft 3 dimensionally, not 2 dimensionally. M and M. We evaluated our 305 primary THAs operated from April 2010 to Mar 2014. Structural bone grafts were utilized on the acetabulum in 39 cases (12.8%). We measured the CE angle on post-operative plain coronal x-rays. 3D-CT evaluation was carried out on the cases with CE angles of 0 degrees or less. We checked the position of the graft and see how much surface area the graft occupies of the total area that receives the load. Result. Mean CE angle on the post-op plain coronal x-rays was −1.5°. 15 cases (38.5%) had 0 degree or less CE angles on the post-op plain coronal x-rays. 11 cases (−15°≤CE<0°), and 4 cases (−30°≤CE<−15°). Mean CE angle was +3.7° on coronal CT of the apex of the socket. Graft position on the acetabulum on 3D-CT was anterosuperior in 13 cases and posterosuperior in 2 cases, wile none showed wide positioning from anterosuperior to posterior. Conclusion. The contact surface area between the graft and the socket is not necessarily large 3 dimensionally, even if the CE angle is 0 degrees in the plain coronal X-rays. Depending on the graft position, sufficient support is considered to be obtained, even though a large size graft is used


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 26 - 26
1 Mar 2017
Miyagi J Harada Y Miyasaka T Kitahara S
Full Access

INTRODUCTION. An accelerometer-based portable navigation system (KneeAlign2, OrthAlign Inc., Aliso Viejo, CA) is expected to improve mechanical axis and component alignment compared to conventional instrumentation in total knee arthroplasty (TKA). However, past reports have evaluated its accuracy using only radiographic measurements. The purpose of this study was to analyze the accuracy of the KneeAlign2 system with radiography and more detailed three-dimensional (3D) CT. METHODS. We targeted 22 patients (24 knees) with severe osteoarthritis who underwent primary TKA using the KneeAlign2 system. Cemented, fixed-bearing, cruciate-retaining prostheses were implanted in all patients. We used postoperative standing-position full-length radiographic evaluation of the lower limbs to measure the hip-knee-ankle angle (HKA), frontal femoral component angle (FFC), and frontal tibial component angle (FTC). However, lower limb rotation and knee flexion could affect radiographic measurement of HKA and the component positioning angle. We used 3D bone models reconstructed from pre- and postoperative CT images to precisely analyze the 3D component positioning. For a 3D matching bone model made from these models, a 2D projection of the pre- and postoperative component positioning planes was made, and the projection angle was measured as angle error compared to the preoperative planned position (Figure 1). Average surgery time and total blood loss on postoperative day 7 were also recorded. RESULTS. There were 24 knees available for analysis. Mean HKA was 0.1° ± 2.2 varus; 16.7% of knees had coronal outliers exceeding 3°. Mean FFC was 0.9° ± 1.9 varus; 29.2% of femoral components were placed with coronal outliers exceeding 2°. Mean FTC was 1.2° ± 1.6 valgus; 20.8% of tibial components were placed with coronal outliers exceeding 2°. In 3D-CT evaluation, mean femoral coronal and sagittal alignment were 1.2° ± 1.7 varus (outliers exceeding ±2°: 37.5%) and 0.8° ± 2.4 flexion (outliers exceeding ±2°: 20.8%), respectively. Mean tibial coronal and sagittal alignment were 1.1° ± 1.4 valgus (outliers exceeding ±2°: 33.3%) and 0.1° ± 1.6 flexion (outliers exceeding ±2°: 20.8%), respectively. Average surgical time was 96 ± 7.7 minutes, and blood loss was 400 g ± 113 on postoperative day 7. CONCLUSIONS. With radiographic and 3D-CT evaluation, the mean angle error values for the femoral and tibial components were less than 2° in the coronal plane, and less than 1° in the sagittal plane. KneeAlign2 is highly accurate in positioning the femoral and tibial components in TKA. For figures/tables, please contact authors directly.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_5 | Pages 36 - 36
1 Jul 2020
DaVries Z Salih S Speirs A Dobransky J Beaule P Grammatopoulos G Witt J
Full Access

Purpose. Spinopelvic parameters are associated with the development of symptomatic femoroacetabular impingement and subsequent osteoarthritis. Pelvic incidence (PI) characterizes the sagittal profile of the pelvis and is important in the regulation of both lumbar lordosis and pelvic orientation (i.e. tilt). The purpose of this imaging-based study was to test the association between PI and acetabular morphology. Methods. Measurements of the pelvis and acetabulum were performed for 96 control patients and 29 hip dysplasia patients using 3D-computed topography (3D-CT) scans. Using previously validated measurements the articular cartilage and cotyloid fossa area of the acetabulum, functional acetabular version/inclination, acetabular depth, pelvic tilt, sacral slope, and PI were calculated. Non-parametric statistical tests were used; significance was set at p<0.05. Results. Of the 125 scans analyzed in this study, 65% were females and the average age was 24.8±6.0 years old. Thirty-six (14.4%) hips had acetabular retroversion; 178 (71.2%) had normal acetabular version; and 36 (14.4%) had high acetabular anteversion. Acetabular version moderately correlated with pelvic incidence; (Sρearman= 0.4; p<0.001). Patients with acetabular retroversion had significantly lower PI (44.2. °. ; 95% CI 41.0–47.4. °. ), compared to those with normal acetabular version (49.4. °. ; 95% CI 47.8–51.0. °. ) (p=0.004). Patients with normal version had significantly lower PI compared to those with high acetabular anteversion (56.4. °. ; 95% CI 52.8–60.0. °. ) (p<0.001). A significant difference in pelvic tilt between the groups (retroversion: 3±7; normal: 9±6; high version: 17±7) (p<0.001) was noted. Acetabular depth inversely and weakly correlated with pelvic incidence (ρ= −0.2; p=0.001). No other of the acetabular parameter correlated with the spinopelvic parameters tested. Conclusion. This is the first study to demonstrate the association between PI and functional acetabular version using 3D-CT scans. The results of this study illustrate the importance of PI as a descriptor of both pelvic and acetabular morphology and function


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 3 - 3
1 Dec 2020
Grupp TM Schilling C Fritz B Reyna ALP Pfaff A Taunt C Mihalko WM
Full Access

Introduction. Beneath infection, instability and malalignment, aseptic tibial component loosening remains a major cause of failure in total knee arthroplasty (TKA) [1]. This emphasizes the need for stable primary and long-term secondary fixation of tibial baseplates. To evaluate the primary stability of cemented tibial baseplates, different pre-clinical test methods have been undergone: finite element analysis [2], static push-out [3,4] or dynamic compression-shear loading [5] until interface failure. However, these test conditions do not reflect the long-term endurance under in vivo loading modes, where the tibial baseplate is predominantly subjected to compression and shear forces in a cyclic profile [5,6]. To distinguish between design parameters the aim of our study was to develop suitable pre-clinical test methods to evaluate the endurance of the implant-cement-bone interface fixation for tibial baseplates under severe anterior (method I) and internal-external torsional (method II) shear test conditions. Materials & Methods. To create a clinically relevant cement penetration pattern a 4. th. generation composite bone model was customised with a cancellous core (12.5 PCF cellular rigid PU foam) to enable for high cycle endurance testing. VEGA System. ®. PS & Columbus. ®. CRA/PSA ZrN-multilayer coated tibial baseplates (2×12) were implanted in the customised bone model using Palacos. ®. R HV bone cement (Figure 1). An anterior compression-shear test (method II) was conducted at 2500 N for 10 million cycles and continued at 3000 N & 3500 N for each 1 million cycles (total: 12 million cycles) simulating post-cam engagement at 45° flexion. An internal-external torsional shear test (method II) was executed in an exaggeration of clinically relevant rotations [7,8] with ±17.2° for 1 million cycles at 3000 N tibio-femoral load in extension. After endurance testing either under anterior shear or internal-external torsion each tibial baseplate was mounted into a testing frame and maximum push-out strength was determined [3]. Results. The cement penetration depth and characteristic pattern were comparable to 3D-CT scans of 24 cemented human tibiae from a previous study [5]. From the final push-out testing, no statistical significant differences could be found for anterior compression-shear testing (method I) with VEGA System. ®. PS (2674 ± 754 N) and Columbus. ®. CRA/PSA (2177 ± 429 N) (p = 0.191), as well as internal-external torsional shear testing (method II) between VEGA System. ®. PS (2561 ± 519 N) and Columbus. ®. CRA/PSA (2825 ± 515 N) tibial baseplates (p = 0.399). Discussion. The newly developed methods allow the evaluation of the endurance behaviour of the implant-cement-bone interface fixation for tibial baseplates in comparison to clinically long-term established knee systems, based on a combination of a suitable artificial bone model and severe anterior and internal-external torsional high cycle shear test conditions


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_16 | Pages 69 - 69
1 Apr 2013
Shoda E Ouchi K Maruyama S Okada Y Kitada S Haneda M Sasaki Y
Full Access

Fracture classification of femoral trochanteric fracture is usually based on plain X-ray. However, complications such as delayed union, non-union, and cut out are seen in stable fracture on X-ray. In this study, fracture was classified by 3D-CT and relationship to X-ray classification was investigated. 48 femoral trochanteric fractures (15 males, 33 female, average age: 82.6) treated with PFNA-II were investigated. Fracture was classified to 2part, 3part(5 subgroups), and 4part with combination of 4 fragments in CT; Head (H), Greater trochanter (G), Lesser trochanter (L), and Shaft (S). 5 subgroups of 3 part fracture were (1) H+G (S: small fragment) + L-S, (2) H + G (B:big fragment) + L-S, (3) H + G-L + S, (4) H + G (W:whole) + S, and (5) H + L + G-S. Numbers of each group were as follows; 2 part: 11, 3 part (1) : 7, 3 part (2) : 12, 3 part (3) : 10, 3 part (4) : 2, 3 part (5) : 3, 4 part : 3. 3 part (3), (4), (5) and 4 part are considered as unstable, however, 6 cases in these groups were classified in A1–1 or A1–2 stable fracture in AO classification. 10 fractures in Evans and 5 fractures in Jensen classification classified as stable were unstable in CT evaluation. It is sometimes very difficult to classify the femoral trochanteric fracture by plain X-ray. Classification with 3D-CT is very useful to distinguish which fracture is stable or unstable


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 97 - 97
1 Jan 2016
Ogawa T Takao M Sakai T Nishii T Sugano N
Full Access

Puropose. Three-dimensional (3D) templating based on computed tomography (CT) in total hip arthroplasty improves the accuracy of implant size. However, even when using 3D-CT preoperative planning, getting the concordance rate between planned and actual sizes to reach 100% is not easy. To increase the concordance rate, it is important to analyze the causes of mismatch; however, no such studies have been reported. This study had the following two purposes: to clarify the concordance rate in implant size between 3D-CT preoperative planning and actual size; and to analyze risk factors for mismatch. Materials and Methods. A single surgeon performed 149 THAs using Trident Cup and Centpillar Stem (Stryker) with CT-based navigation between September 2008 and August 2011. Minimal follow-up was 2 years. Patients with incomplete postoperative CT were excluded from this study. Based on these criteria, the study examined 124 hips in 111 patients (mean age, 60 years, mean BMI 23.2 kg/m2). The preoperative diagnosis was primary osteoarthritis in 8 hips, secondary osteoarthritis in 102 hips, osteonecrosis in 9 hips, rapidly destructive coxopathy in 4 hips and rheumatoid arthritis in 1 hip. We compared cup and stem sizes between preoperative planning and intraoperatively used components. Radiological evaluations were cortical index and canal flare index on preoperative X-rays. We evaluated preoperative planning and postoperative components for cup orientation, cup position, and stem alignment (anteversion, flexion and varus angle) on the CT-navigation system. Fixation of the stem was evaluated by X-ray radiography at 2 years postoperatively according to Engh's criteria. Statistical analysis was performed with the Mann-Whitney U test, and values of P<0.05 were considered statistically significant. Results and Discussion. The concordance rate in cup size between preoperative planning and used implants was 94.4% (117/124 hips) (CS group). A one-size larger cup was used in 4 hips (CO group), and a one-size smaller cup was implanted in 3 hips (CU group). No significant difference was seen between the CS group and the CO or CU groups in change of cup orientation and cup position from planning (P>0.05) (Table 1). The concordance rate of stem size between preoperative planning and used stem was 85.5% (106/124 hips) (SS group). A one-size larger stem than the plan was used in two hips (SO group), and a one-size smaller stem than the plan was implanted in 16 hips (SU group). Significant differences were seen between the SU and SS groups in flexion angle, varus angle, and canal flare index (P<0.05, Table 2). Extension or varus of the stem, or an increase in canal flare index, were risk factors for the used stem size being smaller than planned. On the latest follow-up X-rays, all 124 hips showed bone ingrown stability of the implants. Conclusion. The accuracy of implant size selection was 94.4% and 85.5% for the cup and stem, respectively. No factors associated with cup size mismatch were identified. Flexion angle, varus angle, and canal flare index were associated with stem size mismatch between preoperative planning and the actual used size


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 582 - 582
1 Sep 2012
Miyasaka D Ito T Suda K Imai N Endo N Dohmae Y Minato I
Full Access

Several studies have reported the assessment of the femoral head coverage on plane radiograph and CT data in supine position, though young patients with the dysplastic hip often have symptoms during activities such as standing, walking, and running. On the other hand, some investigators have used a method of CT which allows standardization of the femoral head coverage against an anterior pelvic plane based on the anterior superior iliac spines and the pubic tubercle. We believe both the weight-bearing position and the standardized position to be more relevant for diagnosis and preoperative surgical assessment. So, we show the femoral head coverage in standardized position using 3D-CT method and in weight-bearing position using the plane radiograph and the three-dimensional lower extremity alignment assessment system before and after Curved periacetabular osteotomy (CPO). Especially the covered volume of the femoral head, a new concept, using the three-dimensional lower extremity alignment assessment system which differs from the affected area and is measured by the ratio of the covered area in the medial part of the line connecting the anterior point of the acetabulum with the posterior to the femoral head area in each axial slice, superior slices than the slice passing through the femoral head center, obtained from the reproduced 3D model of the pelvis and the femur in standing position allows us to integrate various measurements reported by past researchers. We studied the consecutive 16 patients treated with CPO. In standardized position the sagittal sectional angles on the slice passing through the femoral head center using 3D-CT method gave us how the anterior, lateral, and posterior coverage was lack compared with normal subjects and whether the adequate transfer of the rotated fragment was performed after operation. The covered volume of the femoral head decides generally the deficiency or the adequateness. In standing position, though the pelvic tilt changes, the femoral head coverage on plane radiograph, representation by the CE angle, the VCA angle, AHI and ARO, was significantly improved, and the covered volume of the femoral head was significantly improved from 25.7% preoperatively to 51.1% postoperatively. Our study showed the improvement of the femoral head coverage, including the covered volume of the femoral head as a new concept, after CPO in weight-bearing and standardized position. The morphological and functional assessment of the femoral head coverage on both pre- and post-CPO should be performed because we can obtain the objective information in standardized position and the femoral head coverage in standing position is closely connected with the pain


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 199 - 199
1 Dec 2013
Wassilew GI Heller M Perka C
Full Access

INTRODUCTION:. Acetabular retroversion has been implicated as a risk factor for the development of early hip osteoarthritis. In clinical practice standard osseous signs such as the cross-over sign (COS) and the posterior wall sign (PWS) are widely used to establish the diagnosis of acetabular retroversion on plain radiographs. Despite standardized radiological evaluation protocols, an increased pelvic tilt can lead to a misdiagnosis of acetabular retroversion in AP radiographs and 2D MR or CT scans. Previous studies have shown that the elimination of observer bias using a standardized methodology based on 3D-CT models and the anterior pelvic plane (APP) for the assessment of COS and PWS results in greater diagnostic accuracy. Using this method a prevalence of 28% for COS and 24% for PWS has been found in a cohort of patients with symptoms indicative of FAI, however the prevalence of both signs in asymptomatic adults remains unknown. This study therefore sought to establish the prevalence of the COS and PWS in relation to the APP in an asymptomatic population using a reliable and accurate 3 D-CT based assessment. METHODS:. A large pool of consecutive CT scans of the pelvis undertaken in our department for conditions unrelated to disorders of the hip was available for analysis. Scans in subjects with a Harris hip score of less than 90 points were excluded leaving a sample of 100 asymptomatic subjects (200 hips) for this study. A previously established 3D analysis method designed to eliminate errors resulting from variations in the position and orientation of the pelvis during CT imaging was applied to determine in order to assess the prevalence of the COS and PWS in relation to the APP. Here, the acetabuli were defined as retroverted if either the COS, PWS or both were positive. RESULTS:. From the total of 200 hips a positive COS was identified in 24% (48/200) and a positive PWS was detected in 6.5% (13/200) relative to the APP using the CT data. A. In male adults a COS was observed in 25.4% (29/114) and a PWS in 10.5% (12/114). In female adults a COS were observed in 22.1% (19/86) and a PWS in 1.2% (1/86). DISCUSSION:. The high incidence of acetabular retroversion observed using an accurate 3D-CT based methodology shows that this anatomic configuration might not differ in frequency between asymptomatic individuals and patients with symptomatic FAI. Patients presenting with hip pain and evidence of FAI should therefore be subjected to strict diagnostic scrutiny, as the presence of a COS and/or PWS shows a poor correlation with the presence of symptomatic disease. In our collective of asymptomatic adults the COS showed a higher incidence than the PWS. Additionally a deficiency of the posterior acetabular wall was rare in asymptomatic adults compared to FAI patients. Therefore, the question whether an abnormal acetabular version does indeed lead to the development of osteoarthritis in all patients warrants further study. Although an association between osteoarthritis and femuro-acetabular impingement is believed to exist, long-term epidemiological studies are needed to establish the natural history of these anatomical configurations