Advertisement for orthosearch.org.uk
Results 1 - 20 of 200
Results per page:
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_1 | Pages 1 - 1
1 Jan 2013
Ul Haq M Soames R Pillai A
Full Access

Introduction. Peroneal tendon subluxation & dislocation is a rare phenomenon. It is a commonly misdiagnosed cause of lateral ankle pain and instability. Aim(s). Our aim was to establish the morphometric (quantification of components) features of retromalleolar fibular groove in cadavers using 3D technique. Study points. To map the version and inclination based on the 3D techniques. To determine the depth of peroneal groove sufficient to prevent subluxation of tendons. Method/materials. We used 12 of embalmed lower extremities. 6 males and 6 females. All were Caucasians (Age: 61–94). The orientation is calculated using the cartilage boundary of the peroneal groove and using the centroid of the curved surface of the groove. We used rhinoceros software for data collection and mapping of peroneal grooves using 3D imaging Microscribe Digitiser. Results. The retromalleolar groove was concave in 8 ankles. Flat in 3 (female 50%) and Convex in 1 (female) ankle. Differences in length/Width/Depth of the retrotrochlear groove are as follows:. Male: Length 6.2 cm, width 5.4 mm, depth 2.2 mm. Female: Length 5.3 cm, width 4.5 mm, depth 0.1 mm. The deepest part of groove was 2.4 cm from tip of fibula (1.3–3.7 cm). The length of deepest part was 1.9 cm (1.4–2.6). Conclusion. •. Three distinct morphological variations. •. In females; the most frequent is flat variety. •. The deepest part of groove was 2.4 cm from tip of fibula. •. The length of deepest part was 1.9 cm which corresponds with musculo-tendinous junction of peroneus brevis. Clinical relevance. Knowledge of peroneal groove geometry in operative treatment of peroneal tendon subluxation (PTS) is important for a good functional outcome. Orientation of the peroneal groove component may be critical in the operative success


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 100 - 100
1 Jun 2012
Iguchi H Watanabe N Tanaka N Hasegawa S Murakami S Tawada K Yoshida M Kuroyanagi G Murase A Nishimori Y
Full Access

We have been using 3-dimensional CAD software for preoperative planning as a desktop tool daily. In ordinary cases, proper size stems and cups can be decided without much labor but in our population, many arthritic hip cases have dysplastic condition and they often come to see us for hip replacement after severe defects were created over the acetabulum. It is often the case that has Crowe's type III, IV hips with leg length difference. For those cases preoperative planning using 3D CAD is a very powerful tool.

Although we only have 2-dimensional display with our computer during preoperative planning, 3 dimensional geometries are not so difficult to be understood, because we can turn the objects with the mouse and can observer from different directions. We can also display their sections and can peep inside of the geometries. It is quite natural desire that a surgeon wishes to see the planed geometries as a 3-dimensional materials. For some complicated cases, we had prepared plastic model and observed at the theater for better understanding. When we ask for a model service, each model costs $2,500. We also have small scale desk top rapid processing tool too, however it takes 2 days to make one side of pelvis. Observation of the geometries using 3-dimensional display can be its substitute without much cost and without taking much time. The problem of using 3D display had been the special goggle to mask either eye alternatively.

In the present paper, we have used a 3D display which has micro arrays of powerful prism to deriver different image for each eye without using any goggle.

Method

After preoperative planning, 2 images were prepared for right eye and left eye giving 2-3 degree's parallax. These images were encoded into a special AVI file for 3-dimensional display. To keep fingers away from the device, several scenes were selected and 3-dimensional slide show was endlessly shown during the surgery.

Result

Cup geometries with screws had been prepared and cup position with screws direction were very useful. The edge of acetabulum and cup edge are well compared then could obtain a better cup alignment. Screws are said to be safe if they were inserted in upper posterior quadrant. However so long as the cluster cup was used, when the cup was given 30 degrees anterior rotation, 25 mm screw was still acceptable using CAT angiography.


Bone & Joint Research
Vol. 12, Issue 9 | Pages 580 - 589
20 Sep 2023
Dai X Liu B Hou Q Dai Q Wang D Xie B Sun Y Wang B

Aims. The aim of this study was to investigate the global and local impact of fat on bone in obesity by using the diet-induced obese (DIO) mouse model. Methods. In this study, we generated a diet-induced mouse model of obesity to conduct lipidomic and 3D imaging assessments of bone marrow fat, and evaluated the correlated bone adaptation indices and bone mechanical properties. Results. Our results indicated that bone mass was reduced and bone mechanical properties were impaired in DIO mice. Lipidomic sequencing and bioinformatic analysis identified 373 differential lipids, 176 of which were upregulated and 197 downregulated. Functional enrichment analysis revealed a significant downregulation of the pathways: fat digestion and absorption (ko04975) and lipolysis regulation in adipocytes (ko04923) in DIO mice, leading to local fat accumulation. The use of 3D imaging confirmed the increase in fat accumulation within the bone marrow cavity of obese mice. Conclusion. Our study sheds light on the intricate interplay between fat and bone, and provides a non-toxic and non-invasive method for measuring marrow adipose tissue. Cite this article: Bone Joint Res 2023;12(9):580–589


Bone & Joint Open
Vol. 3, Issue 2 | Pages 114 - 122
1 Feb 2022
Green GL Arnander M Pearse E Tennent D

Aims. Recurrent dislocation is both a cause and consequence of glenoid bone loss, and the extent of the bony defect is an indicator guiding operative intervention. Literature suggests that loss greater than 25% requires glenoid reconstruction. Measuring bone loss is controversial; studies use different methods to determine this, with no clear evidence of reproducibility. A systematic review was performed to identify existing CT-based methods of quantifying glenoid bone loss and establish their reliability and reproducibility. Methods. A Preferred Reporting Items for Systematic reviews and Meta-Analyses-compliant systematic review of conventional and grey literature was performed. Results. A total of 25 studies were initially eligible. Following screening, nine papers were included for review. Main themes identified compared 2D and 3D imaging, as well as linear- compared with area-based techniques. Heterogenous data were acquired, and therefore no meta-analysis was performed. Conclusion. No ideal CT-based method is demonstrated in the current literature, however evidence suggests that surface area methods are more reproducible and lead to fewer over-estimations of bone loss, provided the views used are standardized. A prospective imaging trial is required to provide a more definitive answer to this research question. Cite this article: Bone Jt Open 2022;3(2):114–122


Bone & Joint Research
Vol. 8, Issue 10 | Pages 459 - 468
1 Oct 2019
Hotchen AJ Dudareva M Ferguson JY Sendi P McNally MA

Objectives. The aim of this study was to assess the clinical application of, and optimize the variables used in, the BACH classification of long-bone osteomyelitis. Methods. A total of 30 clinicians from a variety of specialities classified 20 anonymized cases of long-bone osteomyelitis using BACH. Cases were derived from patients who presented to specialist centres in the United Kingdom between October 2016 and April 2017. Accuracy and Fleiss’ kappa (Fκ) were calculated for each variable. Bone involvement (B-variable) was assessed further by nine clinicians who classified ten additional cases of long bone osteomyelitis using a 3D clinical imaging package. Thresholds for defining multidrug-resistant (MDR) isolates were optimized using results from a further analysis of 253 long bone osteomyelitis cases. Results. The B-variable had a classification accuracy of 77.0%, which improved to 95.7% when using a 3D clinical imaging package (p < 0.01). The A-variable demonstrated difficulty in the accuracy of classification for increasingly resistant isolates (A1 (non-resistant), 94.4%; A2 (MDR), 46.7%; A3 (extensively or pan-drug-resistant), 10.0%). Further analysis demonstrated that isolates with four or more resistant test results or less than 80% sensitive susceptibility test results had a 98.1% (95% confidence interval (CI) 96.6 to 99.6) and 98.8% (95% CI 98.1 to 100.0) correlation with MDR status, respectively. The coverage of the soft tissues (C-variable) and the host status (H-variable) both had a substantial agreement between users and a classification accuracy of 92.5% and 91.2%, respectively. Conclusions. The BACH classification system can be applied accurately by users with a variety of clinical backgrounds. Accuracy of B-classification was improved using 3D imaging. The use of the A-variable has been optimized based on susceptibility testing results. Cite this article: A. J. Hotchen, M. Dudareva, J. Y. Ferguson, P. Sendi, M. A. McNally. The BACH classification of long bone osteomyelitis. Bone Joint Res 2019;8:459–468. DOI: 10.1302/2046-3758.810.BJR-2019-0050.R1


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 9 - 9
2 Jan 2024
Vadalà G Papalia G Russo F Ambrosio L Franco D Brigato P Papalia R Denaro V
Full Access

The use of intraoperative navigation and robotic surgery for minimally invasive lumbar fusion has been increasing over the past decade. The aim of this study is to evaluate postoperative clinical outcomes, intraoperative parameters, and accuracy of pedicle screw insertion guided by intraoperative navigation in patients undergoing lumbar interbody fusion for spondylolisthesis. Patients who underwent posterior lumbar fusion interbody using intraoperative 3D navigation since December 2021 were included. Visual Analogue Scale (VAS), Oswestry Disability Index (ODI), and Short Form Health Survey-36 (SF-36) were assessed preoperatively and postoperatively at 1, 3, and 6 months. Screw placement accuracy, measured by Gertzbein and Robbins classification, and facet joint infringement, measured by Yson classification, were assessed by intraoperative Cone Beam CT scans performed at the end of instrumentation. Finally, operation time, intraoperative blood loss, hospital stay, and screw insertion time were evaluated. This study involved 50 patients with a mean age of 63.7 years. VAS decreased from 65.8±23 to 20±22 (p<.01). ODI decreased from 35.4%±15 to 11.8%±14 (p<.01). An increase of SF-36 from 51.5±14 to 76±13 (p<.01) was demonstrated. The accuracy of “perfect” and “clinically acceptable” pedicle screw fixation was 89.5% and 98.4%, respectively. Regarding facet violation, 96.8% of the screws were at grade 0. Finally, the average screw insertion time was 4.3±2 min, hospital stay was 4.2±0.8 days, operation time was 205±53 min, and blood loss was 169±107 ml. Finally, a statistically significant correlation of operation time with hospital stay, blood loss and placement time per screw was found. We demonstrated excellent results for accuracy of pedicle screw fixation and violation of facet joints. VAS, ODI and SF-36 showed statistically significant improvements from the control at one month after surgery. Navigation with intraoperative 3D images represents an effective system to improve operative performance in the surgical treatment of spondylolisthesis


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 96 - 96
1 Oct 2012
Dubois-Ferriere V Hoffmeyer P Assal M
Full Access

In foot and ankle surgery incorrect placement of implants, or inaccuracy in fracture reduction may remain undiscovered with the use of conventional C-arm fluoroscopy. These imperfections are often only recognized on postoperative computer tomography scans. The apparition of three dimensional (3D) mobile Imaging system has allowed to provide an intraoperative control of fracture reduction and implant placement. Three dimensional computer assisted surgery (CAS) has proven to improve accuracy in spine and pelvic surgery. We hypothesized that 3D-based CAS could improve accuracy in foot and ankle surgery. The purpose of our study was to evaluate the feasibility and utility of a multi-dimensional surgical imaging platform with intra-operative three dimensional imaging and/or CAS in a broad array of foot and ankle traumatic and orthopaedic surgery. Cohort study of patients where the 3D mobile imaging system was used for intraoperative 3D imaging or 3D-based CAS in foot and ankle surgery. The imaging system used was the O-arm Surgical Imaging System and the navigation system was the Medtronic's StealthStation. Surgical procedures were performed according to standard protocols. In case of fractures, image acquisition was performed after reduction of the fracture. In cases of 3D-based CAS, image acquisition was performed at the surgical step before implants placement. At the end of the operations, an intraoperative 3D scan was made. We used the O-arm Surgical Imaging system in 11 patients: intraoperative 3D scans were performed in 3 cases of percutaneus fixation of distal tibio-fibular syndesmotic disruptions; in 2 of the cases, revision of reduction and/or implant placement were needed after the intraoperative 3D scan. Three dimensional CAS was used in 10 cases: 2 open reduction and internal fixation (ORIF) of the calcaneum, 1 subtalar fusion, 2 ankle arthrodesis, 1 retrograde drilling of an osteochondral lesion of the talus, 1 Charcot diabetic reconstruction foot and 1 intramedullary screw fixation of a fifth metatarsal fracture. The guidance was used essentially for screw placement, except in the retrograde drilling of an osteochondral lesion where the guidance was used to navigate the drill tool. Intraoperative 3D imaging showed a good accuracy in implant placement with no need to revision of implants. We report a preliminary case series with use of the O-arm Surgical Imaging System in the field of foot and ankle surgery. This system has been used either as intraoperative 3D imaging control or for 3D-based CAS. In our series, the 3D computer assisted navigation has been very useful in the placement of implants and has shown that guidance of implants is feasible in foot and ankle surgery. Intraoperative 3D imaging could confirm the accuracy of the system as no revisions were needed. Using the O-arm as intraoperative 3D imaging was also beneficial because it allowed todemonstrate intraoperative malreduction or malposition of implants (which were repositioned immediately). Intraoperative 3D imaging system showed very promising preliminary results in foot and ankle surgery. There is no doubt that intraoperative use of 3D imaging will become a standard of care. The exact indications need however to be defined with further studies


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 440 - 440
1 Oct 2006
Grützner P
Full Access

Surgical treatment of pelvic injuries is one of the most challenging tasks in trauma surgery. Intra-operative two-dimensional imaging technology can often not cope with the complex requirements of the three-dimensional anatomy of the pelvis. A registration, which is difficult to achieve with minimal invasive techniques, is obligatory for the CT-based navigation. Changes in the reduction can only be visualized inadequately. The intra-operative imaging after completed osteosynthesis has significantly enhanced since the introduction of three-dimensional image amplifiers. The three-dimensional data can be used directly for the visualization of the osteosynthesis material by linking it to a navigation system. Since January 2001 the Trauma Center Ludwig-shafen has the ability to perform the registration-free three-dimensional navigation by linking the 3D image intensifier to a navigation system. From January 2002 to January 2005 30 patients with a pelvic injury, where the intra-operative navigation was carried out with the 3D image intensifier, were included in a prospective study. A complete neurological status, conventional fluoroscopic diagnosis, and CT-images were available pre-operatively for all patients. This information formed the basis for the classification and indication for surgery. Patients were positioned on a metal-free carbon table. Due to the registration-free navigation, and thus without the need for a manual registration of landmarks, a tissue-saving preparation could be performed. The postoperative assessment of the implant position was carried out by an independent radiologist. Screw placement on the pelvic ring was performed in 23 patients (IS lag screws), in 3 patients on both sides. Periacetabular screws were implanted in 7 patients with acetabular fractures. A prerequisite was that the closed repositioning and a temporary fixation could be carried out before the recording of the 3D dataset. 7 surgeons participated in this study. The 3D image intensifier and the navigation system were always operated by the same person. In total 66 screws were implanted (49 IS screws, 17 periacetabular screws). One misplacement of a IS screw with a penetration of the neuroforamen was found during post-operative check-ups. The screw position was corrected during revision surgery. The mean fluoroscopy time for the recording of the 3D scans and the 2D check-ups was 1.78 (+/− 0.4) min. The mean operating time was 105 (+/− 24) min. This prospective study demonstrated the clinical use of navigation in a three-dimensional dataset from the 3D image intensifier with automatic registration on the pelvis. A relatively high misplacement ratio during IS lag screw placement in the traditional, percutaneous technique according to Matta up to 30% is described in literature. The 3D image intensifier navigation facilitates a standardized working process in the operating room. This is reflected in the low range in fluoroscopy and operating time. The limiting factor in pelvic surgery is the relatively small image volume of the 3D image intensifier of 12 cm3 and the low image quality compared to a CT


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_III | Pages 75 - 75
1 Feb 2012
Marlow D Gaffey A
Full Access

Background. Paediatric pelvic corrective surgery for developmentally dysplastic hips requires that the acetabular roof is angulated to improve stability and reduce morbidity. Accurate bony positioning is vital in a weight-bearing joint as is appropriate placement of metalwork without intrusion into the joint. This can often be difficult to visualise using conventional image intensifier equipment in a 2D plane. Methods. The ARCADIS Orbic 3D image intensifier produces CT-quality multi-axial images which can be manipulated intra-operatively to give immediate feedback of positioning of internal fixation. The reported radiation dose is 1/5 and 1/30 of a standard spiral CT in high and low quality modes, respectively. Results. We present 15 elective cases of paediatric pelvic osteotomy and fixation of SUFE, with use of the ARCADIS Orbic 3D image intensifier. Images were taken intra-operatively in order to confirm satisfactory fracture reduction and appropriate positioning of fixation devices avoiding joint spaces. This was achieved by 3D reconstruction and review of the surgical field in theatre. In all of the cases appropriate bony placement and position of fixation devices was demonstrated in the multi-axial images and 3D reconstruction. Conclusions. The use of 3D image intensification is a novelty in the UK. Our results suggest that the 3D image intensifier is a valuable aid in the field of paediatric surgery. Accurate positioning of internal fixation devices can be confidently confirmed ‘on-table’. The radiation dose is also significantly less than a standard spiral CT


Bone & Joint Research
Vol. 10, Issue 10 | Pages 639 - 649
19 Oct 2021
Bergiers S Hothi H Henckel J Di Laura A Belzunce M Skinner J Hart A

Aims. Acetabular edge-loading was a cause of increased wear rates in metal-on-metal hip arthroplasties, ultimately contributing to their failure. Although such wear patterns have been regularly reported in retrieval analyses, this study aimed to determine their in vivo location and investigate their relationship with acetabular component positioning. Methods. 3D CT imaging was combined with a recently validated method of mapping bearing surface wear in retrieved hip implants. The asymmetrical stabilizing fins of Birmingham hip replacements (BHRs) allowed the co-registration of their acetabular wear maps and their computational models, segmented from CT scans. The in vivo location of edge-wear was measured within a standardized coordinate system, defined using the anterior pelvic plane. Results. Edge-wear was found predominantly along the superior acetabular edge in all cases, while its median location was 8° (interquartile range (IQR) -59° to 25°) within the anterosuperior quadrant. The deepest point of these scars had a median location of 16° (IQR -58° to 26°), which was statistically comparable to their centres (p = 0.496). Edge-wear was in closer proximity to the superior apex of the cups with greater angles of acetabular inclination, while a greater degree of anteversion influenced a more anteriorly centred scar. Conclusion. The anterosuperior location of edge-wear was comparable to the degradation patterns observed in acetabular cartilage, supporting previous findings that hip joint forces are directed anteriorly during a greater portion of walking gait. The further application of this novel method could improve the current definition of optimal and safe acetabular component positioning. Cite this article: Bone Joint Res 2021;10(10):639–649


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_11 | Pages 20 - 20
1 Sep 2021
De La Torre C Lam KS Carriço G
Full Access

Introduction. The placement of a large interbody implant allows for a larger surface area for fusion, vis a vis, via retroperitoneal direct anterior, antero-lateral and lateral approaches. At the same time, spinal navigation facilitates a minimally invasive fixation for inserting posterior pedicle screws. We report on the first procedures in the United Kingdom performed by a single-surgeon at a single- centre using navigated robot-assisted spine surgery without the need for guide-wires. Materials and Methods. Whilst positioned in the supine or lateral position, a routine supine anterior lumbar interbody fusion (ALIF), and/or antero-lateral ALIF (AL-ALIF) and/or lateral lateral interbody fusion (LLIF) is performed. The patient is then turned prone or kept in the single lateral position (SPL) for insertion of the posterior screws performed under robotic guidance. Intraoperative CT scan 3D images captured then are sent to the Robotic software platform for planning of the screw trajectories and finally use again at the end of the procedure to confirm screw accuracy. We identified 34 consecutive patients from October 2019 to January 2020 who underwent robotic assisted spine surgery. The demographic, intraoperative, and perioperative data of all these patients were reviewed and presented. Results. Of the 34 patients, 65 levels were treated in total using 204 screws. Of the 21 patients (60%) who underwent single-level fixation, 14 of them (67%) were treated at the L5/S1 level, 3 at L3/L4, 3 at L4/L5 and 1 at L2/L3 level. The remaining 13 patients (40%) underwent multi-level fixation, of which 4 were adult scoliosis. 15 underwent a supine ALIF approach, 1 underwent AL-ALIF, 8 patients underwent combined LLIF and AL-ALIF approach in a lateral decubitus, whilst 9 underwent pure LLIF approach (of which 3 patients were in the single position lateral) and one patient had previous TLIF surgery. The average estimated blood loss was 60 cc. The average planning time was 10 min and the average duration of surgery was 50 min. The average patient age was 54 years and 64% (22/34) were male. The average BMI was 28.1 kg/m. 2. There were no re-interventions due to complications or mal positioned screws. Conclusion. Minimally invasive spine surgery using robot-assisted navigation yields an improved level of accuracy, decreased radiation exposure, minimal muscle disruption, decreased blood loss, shorter operating theatre time, length of stay, and lower complication rates. Further follow-up of the patients treated will help compare the clinical outcomes with other techniques


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_7 | Pages 23 - 23
8 May 2024
Jayatilaka M Fisher A Fisher L Molloy A Mason L
Full Access

Introduction. The treatment of posterior malleolar fractures is developing. Mason and Molloy (Foot Ankle Int. 2017 Nov;38(11):1229-1235) identified only 49% of posterior malleolar rotational pilon type fractures had syndesmotic instabilities. This was against general thinking that fixation of such a fragment would stabilize the syndesmosis. Methods. We examined 10 cadaveric lower limbs that had been preserved for dissection at the Human Anatomy and Resource Centre at Liverpool University in a solution of formaldehyde. The lower limbs were carefully dissected to identify the ligamentous structures on the posterior aspect of the ankle. To compare the size to the rotational pilon posterior malleolar fracture (Mason and Molloy 2A and B) we gathered information from our posterior malleolar fracture database. 3D CT imaging was analysed using our department PACS system. Results. The PITFL insertion on the posterior aspect of the tibia is very large. The average size of insertion was 54.9×47.1mm across the posterior aspect of the tibia. Medially the PITFL blends into the sheath of tibialis posterior and laterally into the peroneal tendon sheath. 78 posterior lateral and 35 posterior medial fragments were measured. On average, the lateral to medial size of the posteromalleolar fragment was 24.5mm in the posterolateral fragment, and 43mm if there is a posteromedial fragment present also. The average distal to proximal size of the posterolateral fragment was 24.5mm and 18.5mm for the posteromedial fragment. Conclusion. The PITFL insertion on the tibia is broad. In comparison to the average size of the posterior malleolar fragments, the PITFL insertion is significantly bigger. Therefore, for a posterior malleolar fracture to cause posterior syndesmotic instability, a ligamentous injury will also have to occur. This explains the finding by Mason and Molloy that only 49% of type 2 injuries had a syndesmotic injury on testing


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 81 - 81
14 Nov 2024
Ahmed NA Narendran K Ahmed NA
Full Access

Introduction. Anterior shoulder instability results in labral and osseous glenoid injuries. With a large osseous defect, there is a risk of recurrent dislocation of the joint, and therefore the patient must undergo surgical correction. An MRI evaluation of the patient helps to assess the soft tissue injury. Currently, the volumetric three-dimensional (3D) reconstructed CT image is the standard for measuring glenoid bone loss and the glenoid index. However, it has the disadvantage of exposing the patient to radiation and additional expenses. This study aims to compare the values of the glenoid index using MRI and CT. Method. The present study was a two-year cross-sectional study of patients with shoulder pain, trauma, and dislocation in a tertiary hospital in Karnataka. The sagittal proton density (PD) section of the glenoid and enface 3D reconstructed images of the scapula were used to calculate glenoid bone loss and the glenoid index. The baseline data were analyzed using descriptive statistics, and the Chi-square test was used to test the association of various complications with selected variables of interest. Result. The glenoid index calculated in the current study using 3D volumetric CT images and MR sagittal PD images was 0.95±0.01 and 0.95±0.01, respectively. The CT and MRI glenoid bone loss was 5.41±0.65% and 5.38±0.65%, respectively. When compared, the glenoid index and bone loss calculated by MRI and CT revealed a high correlation and significance with a p-value of <0.001. Conclusions. The study concluded that MRI is a reliable method for glenoid measurement. The sagittal PD sequence combined with an enface glenoid makes it possible to identify osseous defects linked to glenohumeral joint damage and dislocation. The values derived from 3D CT are identical to the glenoid index and bone loss determined using the sagittal PD sequence in MRI


Bone & Joint Research
Vol. 8, Issue 7 | Pages 304 - 312
1 Jul 2019
Nicholson JA Tsang STJ MacGillivray TJ Perks F Simpson AHRW

Objectives. The aim of this study was to review the current evidence and future application for the role of diagnostic and therapeutic ultrasound in fracture management. Methods. A review of relevant literature was undertaken, including articles indexed in PubMed with keywords “ultrasound” or “sonography” combined with “diagnosis”, “fracture healing”, “impaired fracture healing”, “nonunion”, “microbiology”, and “fracture-related infection”. Results. The use of ultrasound in musculoskeletal medicine has expanded rapidly over the last two decades, but the diagnostic use in fracture management is not routinely practised. Early studies have shown the potential of ultrasound as a valid alternative to radiographs to diagnose common paediatric fractures, to detect occult injuries in adults, and for rapid detection of long bone fractures in the resuscitation setting. Ultrasound has also been shown to be advantageous in the early identification of impaired fracture healing; with the advent of 3D image processing, there is potential for wider adoption. Detection of implant-related infection can be improved by ultrasound mediated sonication of microbiology samples. The use of therapeutic ultrasound to promote union in the management of acute fractures is currently a controversial topic. However, there is strong in vitro evidence that ultrasound can stimulate a biological effect with potential clinical benefit in established nonunions, which supports the need for further investigation. Conclusion. Modern ultrasound image processing has the potential to replace traditional imaging modalities in several areas of trauma practice, particularly in the early prediction of impaired fracture healing. Further understanding of the therapeutic application of ultrasound is required to understand and identify the use in promoting fracture healing. Cite this article: J. A. Nicholson, S. T. J. Tsang, T. J. MacGillivray, F. Perks, A. H. R. W. Simpson. What is the role of ultrasound in fracture management? Diagnosis and therapeutic potential for fractures, delayed unions, and fracture-related infection. Bone Joint Res 2019;8:304–312. DOI: 10.1302/2046-3758.87.BJR-2018-0215.R2


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 69 - 69
14 Nov 2024
Sawant S Borotikar B Raghu V Audenaert E Khanduja V
Full Access

Introduction. Three-dimensional (3D) morphological understanding of the hip joint, specifically the joint space and surrounding anatomy, including the proximal femur and the pelvis bone, is crucial for a range of orthopedic diagnoses and surgical planning. While deep learning algorithms can provide higher accuracy for segmenting bony structures, delineating hip joint space formed by cartilage layers is often left for subjective manual evaluation. This study compared the performance of two state-of-the-art 3D deep learning architectures (3D UNET and 3D UNETR) for automated segmentation of proximal femur bone, pelvis bone, and hip joint space with single and multi-class label segmentation strategies. Method. A dataset of 56 3D CT images covering the hip joint was used for the study. Two bones and hip joint space were manually segmented for training and evaluation. Deep learning models were trained and evaluated for a single-class approach for each label (proximal femur, pelvis, and the joint space) separately, and for a multi-class approach to segment all three labels simultaneously. A consistent training configuration of hyperparameters was used across all models by implementing the AdamW optimizer and Dice Loss as the primary loss function. Dice score, Root Mean Squared Error, and Mean Absolute Error were utilized as evaluation metrics. Results. Both the models performed at excellent levels for single-label segmentations in bones (dice > 0.95), but single-label joint space performance remained considerably lower (dice < 0.87). Multi-class segmentations remained at lower performance (dice < 0.88) for both models. Combining bone and joint space labels may have introduced a class imbalance problem in multi-class models, leading to lower performance. Conclusion. It is not clear if 3D UNETR provides better performance as the selection of hyperparameters was the same across the models and was not optimized. Further evaluations will be needed with baseline UNET and nnUNET modeling architectures


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 153 - 153
1 Mar 2010
Kim Y Le D Kim K
Full Access

In the knee joint surgery such as total knee arthroplasty (TKA), the implant should be inserted in proper position with correct bone alignment because the abnormal kinematics of implanted knees by implant mal-positioning or mal-alignment could cause failure of surgery. Therefore, quantitative information of a 3D kinematics of the knee joint is very helpful to evaluate the surgical treatment such as planning of size and alignment of the implant. In this study, a 2D/3D image matching method was developed to estimate the kinematics of the knee joint based on an automated pixel by pixel comparison of images. Two projection images were obtained from the 3D object in two perpendicular directions where the given dual X-ray images were taken. The 3D object was translated and rotated automatically and continuously until its projection images were matched with the X-ray images in a given tolerance range. The optimization algorithm was used to minimise the root mean square error between the gray scale values of each pixel in the projection image and the given X-ray image. For estimating the position and orientation of the knee joint, the 3D knee joint models were reconstructed from CT data. The 3D model was matched with the given dual X-ray images by using the developed 2D/3D image matching method. The tibial and femoral components were then combined into the whole knee joint model. By adding fiducial markers based on clinically conventional method, the posterior and mediolateral translation of femur with respect to tibia as well as the flexion angle were measured. In the experiment with the cubic phantom, the position errors were below 0.10 mm and the orientation errors were below 0.05 o when using dual X-ray images. For the given dual X-ray images, the relative in vivo kinematics of the femur was measured as the posterior translation was 3.0 mm and the mediolateral translation was 0.9 mm. In addition, the flexion angle of the knee joint from the sagittal view was 51o while the angle measured from the given X-ray image was 50 o. The previous 2D/3D image matching methods operated manually took long time and was dependent on the operator. Recently, automated image matching method has developed by applying optimization algorithms. In this study, the optimal position and orientation were obtained by the direct pixel by pixel comparison, which are easy to implement and modify the algorithm. The present automated method could accelerate the matching process and stabilise the repeatability. In addition, the image matching method with dual images was used to improve the out-of-plane accuracy since the image matching method with a single X-ray image has a limitation of methodology in detecting out-of-plane translation and rotation though the in-plane accuracy was acceptable. The present 2D/3D image matching method is a powerful tool for the accurate determinations of 3D position and orientation of the knee joint and could provide informative characterization of implant designs and surgical options of the knee surgery


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 65 - 65
17 Apr 2023
Tacchella C Lombardero SM Clutton E Chen Y Crichton M
Full Access

In this work, we propose a new quantitative way of evaluating acute compartment syndrome (ACS) by dynamic mechanical assessment of soft tissue changes. First, we have developed an animal model of ACS to replicate the physiological changes during the condition. Secondly, we have developed a mechanical assessment tool for quantitative pre-clinical assessment of ACS. Our hand-held indentation device provides an accurate method for investigations into the local dynamic mechanical properties of soft tissue and for in-situ non-invasive assessment and monitoring of ACS. Our compartment syndrome model was developed on the cranial tibial and the peroneus tertius muscles of a pig's leg (postmortem). The compartment syndrome pressure values were obtained by injecting blood from the bone through the muscle. To enable ACS assessment by a hand-held indentation device we combined three main components: a load cell, a linear actuator and a 3-axis accelerometer. Dynamic tests were performed at a frequency of 0.5 Hz and by applying an amplitude of 0.5 mm. Another method used to observe the differences in the mechanical properties inside the leg was a 3D Digital Image Correlation (3D-DIC). Videos were taken from two different positions of the pig's leg at different pressure values: 0 mmHg, 15 mmHg and 40 mmHg. Two strains along the x axis (Exx) and y axis (Eyy) were measured. Between the two pressure cases (15 mmHg and 40 mmHg) a clear deformation of the model is visible. In fact, the bigger the pressure, the more visible the increase in strain is. In our animal model, local muscle pressures reached values higher than 40 mmHg, which correlate with observed human physiology in ACS. In our presentation we will share our dynamic indentation results on this model to demonstrate the sensitivity of our measurement techniques. Compartment syndrome is recognised as needing improved clinical management tools. Our approach provides both a model that reflects physiological behaviour of ACS, and a method for in-situ non-invasive assessment and monitoring


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 317 - 317
1 Mar 2013
Sakka A Taguchi T
Full Access

Introduction. Total knee arthroplasty (hereinafter TKA), it is thought that the setting position of each component and the angle have a big influence on surgical results. Preoperative planning with accurate and detailed 3D templates are has been done in many facilities in TKA. However, in the setting position, the 2D evaluation with X-rays is still common after operation, and there are few facilities going in 3D image. A three-dimensional evaluation method of the TKA includes a rating system using CT and the MRI, but influence (artifactual) with the metal occurs, and a detailed evaluation becomes difficult. In this study, we evaluated it after the matching method with the 3D plan using “Physio-Knee” where the materials of the femoral component were alumina ceramics in the preoperation of each component setting position by the CT before and after operation. Patients and methods. We intended for 12 knees which we performed TKA used the Physio-Knee by December, 2011 from October, 2010. The all cases woman, the operation average age were 68.9 years old (62 to 79 years). For these, we performed CT photography of the whole lower limbs after operation like preoperation and each component setting was located after operation using evaluation software made in LEXI company and evaluated it. Results and Discussion. Like 2D evaluation result, as for one, the error with the plan did not recognize errors more than 3 degrees at the setting angle of the each component in the coronal and sagittal plane in preoperation either. A detailed evaluation was possible about the slightly difficult rotation by the 2D evaluation. As for the 3D image matching method that we performed this time, a visual instant evaluation was possible and, in addition, the evaluation of the rotation position was possible and was able to evaluate it in detail and precisely more in comparison with conventional 2D evaluation. A conclusion. In TKA, we think to evaluate correct implant setting, acquisition to alignment that the 3D image matching method that we performed this time is a useful tool


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 75 - 75
1 Mar 2021
Mendes L Bosmans K Maréchal M Luyten F
Full Access

Joint surface restoration of deep osteochondral defects represents a significant unmet clinical need. Moreover, untreated lesions lead to a high rate of osteoarthritis. The current strategies to repair deep osteochondral defects such as osteochondral grafting or sandwich strategies combining bone autografts with ACI/MACI fail to generate long-lasting osteochondral interfaces. Herein, we investigated the capacity of juvenile Osteochondral Grafts (OCGs) to repair osteochondral defects in skeletally mature animals. With this regenerative model in view, we set up a new biological, bilayered, and scaffold-free Tissue Engineered (TE) construct for the repair of the osteochondral unit of the knee. Skeletally immature (5 weeks old) and mature (11 weeks old) Lewis rats were used. Cylindrical OCGs were excised from the intercondylar groove of the knee of skeletally immature rats and transplanted into osteochondral defects created in skeletally mature rats. To create bilayered TE constructs, micromasses of human periosteum-derived progenitor cells (hPDCs) and human articular chondrocytes (hACs) were produced in vitro using chemically defined medium formulations. These constructs were subsequently implanted orthotopically in vivo in nude rats. At 4 and 16 weeks after surgery, the knees were collected and processed for subsequent 3D imaging analysis and histological evaluation. Micro-computed tomography (µCT), H&E and Safranin O staining were used to evaluate the degree of tissue repair. Our results showed that the osteochondral unit of the knee in 5 weeks old rats exhibit an immature phenotype, displaying active subchondral bone formation through endochondral ossification, the absence of a tidemark, and articular chondrocytes oriented parallel to the articular surface. When transplanted into skeletally mature animals, the immature OCGs resumed their maturation process, i.e., formed new subchondral bone, partially established the tidemark, and maintained their Safranin O-positive hyaline cartilage at 16 weeks after transplantation. The bilayered TE constructs (hPDCs + hACs) could partially recapitulate the cascade of events as seen with the immature OCGs, i.e., the regeneration of the subchondral bone and the formation of the typical joint surface architecture, ranging from non-mineralized hyaline cartilage in the superficial layers to a progressively mineralized matrix at the interface with a new subchondral bone plate. Cell-based TE constructs displaying a hierarchically organized structure comprising of different tissue forming units seem an attractive new strategy to treat osteochondral defects of the knee


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_17 | Pages 11 - 11
1 Nov 2016
Iannotti J
Full Access

CT-based three-dimensional (3D) pre-operative imaging along with 2D orthogonal sections defined by the plane of the scapula (axial, sagittal and coronal planes) has been demonstrated by many research groups to be a very accurate way to define the bone pathology and alignment/subluxation of the humeral head in relationship to the center line of the scapula or the center of the glenoid fossa. When 3D CT imaging is combined with 3D implant templating the surgeon is best able to define the optimal implant and its location for the desired correction of the bone abnormalities. The use and value of 3D imaging is best when the there is more severe bone pathology and deformity. Transferring the computer-based information of implant location to the surgical site can involve multiple methods. The three methods discussed in the literature to date including use of standard instrumentation in a manner specified by the pre-operative planning, use of single-use patient specific instrumentation and use of reusable patient specific instrumentation. Several cadaver and sawbone studies have demonstrated significant improvement in placement of the glenoid implant with both single use and reusable patient specific instrumentation when compared to use of 2D imaging and standard instrumentation. Randomised clinical trials have also shown that 3D planning and implant templating is very effective in accurate placement of the implant in the desired location using all three types of instrumentation. The optimal use of this technology is dependent upon the severity of the pathology and the experience and preference of the surgeon. With more severe pathology and less surgeon experience 3D pre-operative imaging and templating and use of some level of patient specific instrumentation provides more accurate placement of the glenoid implant