header advert
Results 1 - 3 of 3
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 167 - 167
1 Mar 2013
Kester M D'Alessio J Flores-Hernandez C Lima DD
Full Access

Introduction

Component and limb alignment (especially varus >3°) have been associated with soft-tissue imbalance, increased polyethylene wear, and tibial tray subsidence. However, not all clinical outcome studies have found significant correlation between tibial varus and revision surgery. While the link between limb alignment and failure has been attributed to increased medial compartmental loading and generation of shear stress, quantitative biomechanical evidence to directly support this mechanism is incomplete. In this study, we analyzed the effect of limb alignment and tibial tray alignment on the risk for bone damage and subsequent risk for tray loosening.

Methods

A finite element model of knee arthroplasty previously validated with in vitro cadaver testing was used. Models of four subjects were constructed with tibial resections simulating a 0°, 3°, 5°, and 7° varus alignment with respect to the mechanical axis of the tibia and the tray implanted at the corresponding angles. Tibial tray orientation was simulated without change in limb alignment (i.e. maintaining the mechanical axis of the knee at 0°) and with limb alignment ranging from 3° valgus to 7° varus (Fig 1).

A static load equivalent to three times the bodyweight of the subject was applied in line with the mechanical knee axis. Relative motion between the tibial tray and tibial bone was calculated. Elements with an equivalent von Mises strain >0.4% were selected and assigned an elastic modulus of 5 MPa to reflect damaged bone. Simulation was repeated and after-damage micromotion recorded.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 329 - 329
1 Mar 2013
Shimizu N Tomita T Patil S Yamazaki T Iwamoto K Kurita M Fujii M Lima DD Sugamoto K
Full Access

Background

The decision to choose CR (cruciate retaining) insert or CS (condylar stabilized) insert during TKA remains a controversial issue. Triathlon CS type has a condylar stabilized insert with an increased anterior lip that can be used in cases where the PCL is sacrificed but a PS insert is not used. The difference of the knee kinematics remains unclear. This study measured knee kinematics of deep knee flexion under load in two insert designs using 2D/3D registration technique.

Materials and methods

Five fresh-frozen cadaver lower extremity specimens were surgically implanted with Triathlon CR components (Stryker Orthopedics, Mahwah, NJ). CR insert with retaining posterior cruciate ligament were measured firstly, and then CS insert after sacrificing posterior cruciate ligament were measured. Under fluoroscopic surveillance, the knees were mounted in a dynamic quadriceps-driven closed-kinetic chain knee simulator based on the Oxford knee rig design. The data of every 10° knee flexion between 0° and 140° were corrected. Femorotibial motion including tibial polyethylene insert were analyzed using 2D/3D registration technique, which uses computer-assisted design (CAD) models to reproduce the spatial position of the femoral, tibial components from single-view fluoroscopic images. We evaluated the knee flexion angle, femoral axial rotation, and anteroposterior translation of contact points.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 56 - 56
1 Mar 2013
Netter J Hermida J Kester M D'Alessio J Steklov N Flores-Hernandez C Colwell C Lima DD
Full Access

INTRODUCTION

Wear and polyethylene damage have been implicated in up to 22% of revision surgeries after unicompartmental knee replacement. Two major design rationales to reduce this rate involve either geometry and/or material strategies. Geometric options involve highly congruent mobile bearings with large contact areas; or moderately conforming fixed bearings to prevent bearing dislocation and reduce back-side wear, while material changes involve use of highly crosslinked polyethylene. This study was designed to determine if a highly crosslinked fixed-bearing design would increase wear resistance.

METHODS

Gravimetric wear rates were measured for two unicompartmental implant designs: Oxford unicompartmental (Biomet) and Triathlon X3 PKR (Stryker) on a knee wear simulator (AMTI) using the ISO-recommended standard. The Oxford design had a highly conforming mobile bearing of compression molded Polyethylene (Arcom). The Triathlon PKR had a moderately conforming fixed bearing of sequentially crosslinked Polyethylene (X3).

A finite element model of the AMTI wear simulation was constructed to replicate experimental conditions and to compute wear. This approach was validated using experimental results from previous studies.

The wear coefficient obtained previously for radiation-sterilized low crosslinked polyethylene was used to predict wear in Oxford components. The wear coefficient obtained for highly crosslinked polyethylene was used to predict wear in Triathlon X3 PKR components. To study the effect design and polyethylene crosslinking, wear rates were computed for each design using both wear coefficients.