header advert
Results 1 - 8 of 8
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 4 - 4
23 Jun 2023
Gross A Safir O Kuzyk P
Full Access

Pelvic discontinuity is a separation through the acetabulum with the ilium displacing superiorly and the ischium/pubis displacing inferiorly. This is a biomechanically challenging environment with a high rate of failure for standard acetabular components. The cup-cage reconstruction involves the use of a highly porous metal cup to achieve biological bone ingrowth on both sides of the pelvic discontinuity and an ilioischial cage to provide secure fixation across the discontinuity and bring the articulating hip center to the correct level. The purpose of this study was to report long term follow up of the use of the cup-cage to treat pelvic discontinuity.

All hip revision procedures between January 2003 and January 2022 where a cup-cage was used for a hip with a pelvic discontinuity were included in this retrospective review. All patients received a Trabecular Metal Revision Shell with either a ZCA cage or TMARS cage (Zimmer-Biomet Inc.). Pelvic discontinuity was diagnosed on pre-operative radiographs and/or intraoperatively. Kaplan-Meier survival analysis was performed with failure defined as revision of the cup-cage reconstruction.

Fifty-seven cup-cages in 56 patients were included with an average follow-up of 6.25 years (0.10 to 19.98 years). The average age of patients was 72.09 years (43 to 92 years) and 70.2% of patients were female. The five year Kaplan-Meier survival was 92.0% (95% CI 84.55 to 99.45) and the ten year survival was 80.5% (95% CI 58.35 to 102.65). There were 5 major complications that required revision of the cup-cage reconstruction (3 infections and 2 mechanical failures). There were 9 complications that required re-operation without revision of the cup-cage reconstruction (5 dislocations, 3 washouts for infection and one femoral revision for aseptic loosening).

In our hands the cup-cage reconstruction has provided a reliable tool to address pelvic discontinuity with an acceptable complication rate.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 74 - 74
1 Dec 2022
Changoor A Suderman R Wood B Grynpas M Hurtig M Kuzyk P
Full Access

Large cartilage lesions in younger patients can be treated by fresh osteochondral allograft transplantation, a surgical technique that relies on stable initial fixation and a minimum chondrocyte viability of 70% in the donor tissue to be successful. The Missouri Osteochondral Allograft Preservation System (MOPS) may extend the time when stored osteochondral tissues remain viable. This study aimed to provide an independent evaluation of MOPS storage by evaluating chondrocyte viability, chondrocyte metabolism, and the cartilage extracellular matrix using an ovine model.

Femoral condyles from twelve female Arcott sheep (6 years, 70 ± 15 kg) were assigned to storage times of 0 (control), 14, 28, or 56 days. Sheep were assigned to standard of care [SOC, Lactated Ringer's solution, cefazolin (1 g/L), bacitracin (50,000 U/L), 4°C storage] or MOPS [proprietary media, 22-25°C storage]. Samples underwent weekly media changes. Chondrocyte viability was assessed using Calcein AM/Ethidium Homodimer and reported as percent live cells and viable cell density (VCD). Metabolism was evaluated with the Alamar blue assay and reported as Relative Fluorescent Units (RFU)/mg. Electromechanical properties were measured with the Arthro-BST, a device used to non-destructively compress cartilage and calculate a quantitative parameter (QP) that is inversely proportional to stiffness. Proteoglycan content was quantified using the dimethylmethylene blue assay of digested cartilage and distribution visualized by Safranin-O/Fast Green staining of histological sections. A two-way ANOVA and Tukey's post hoc were performed.

Compared to controls, MOPS samples had fewer live cells (p=0.0002) and lower VCD (p=0.0004) after 56 days of storage, while SOC samples had fewer live cells (p=0.0004, 28 days; p=0.0002, 56 days) and lower VCD (p=0.0002, 28 days; p=0.0001, 56 days) after both 28 and 56 days (Table 1). At 14 days, the percentage of viable cells in SOC samples were statistically the same as controls but VCD was lower (p=0.0197). Cell metabolism in MOPS samples remained the same over the study duration but SOC had lower RFU/mg after 28 (p=0.0005) and 56 (p=0.0001) days in storage compared to controls. These data show that MOPS maintained viability up to 28 days yet metabolism was sustained for 56 days, suggesting that the conditions provided by MOPS storage allowed fewer cells to achieve the same metabolic levels as fresh cartilage. Electromechanical QP measurements revealed no differences between storage methods at any individual time point. QP data could not be used to interpret changes over time because a mix of medial and lateral condyles were used and they have intrinsically different properties. Proteoglycan content in MOPS samples remained the same over time but SOC was significantly lower after 56 days (p=0.0086) compared to controls. Safranin-O/Fast Green showed proteoglycan diminished gradually beginning at the articular surface and progressing towards bone in SOC samples, while MOPS maintained proteoglycan over the study duration (Figure 1).

MOPS exhibited superior viability, metabolic activity and proteoglycan retention compared to SOC, but did not maintain viability for 56 days. Elucidating the effects of prolonged MOPS storage on cartilage properties supports efforts to increase the supply of fresh osteochondral allografts for clinical use.

For any figures or tables, please contact the authors directly.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 2 - 2
1 Mar 2021
Changoor A Suderman R Alshaygy I Fuhrmann A Akens M Safir O Grynpas M Kuzyk P
Full Access

Patients undergoing revision surgery of a primary total hip arthroplasty often exhibit bone loss and poor bone quality, which make achieving stable fixation and osseointegration challenging. Implant components coated in porous metals are used clinically to improve mechanical stability and encourage bone in-growth. We compared ultra-porous titanium coatings, known commercially as Gription and Porocoat, in an intra-articular model by press-fitting coated cylindrical implants into ovine femoral condyles and evaluating bone in-growth and fixation strength 4, 8 and 16 weeks post-operatively.

Bilateral surgery using a mini-arthrotomy approach was performed on twenty-four Dorset-Rideau Arcott rams (3.4 ± 0.8 years old, 84.8 ± 9.3 kg) with Institutional Animal Care Committee approval in accordance with the Canadian Council on Animal Care. Cylindrical implants, 6.2 mm in diameter by 10 mm in length with surface radius of curvature of 35 mm, were composed of a titanium substrate coated in either Porocoat or Gription and press-fit into 6 mm diameter recipient holes in the weight-bearing regions of the medial (MFC) and lateral (LFC) femoral condyles. Each sheep received 4 implants; two Gription in one stifle (knee) and two Porocoat in the contralateral joint. Biomechanical push-out tests (Instron ElectroPuls E10000) were performed on LFCs, where implants were pushed out relative to the condyle at a rate of 2 mm/min. Force and displacement data were used to calculate force and displacement at failure, stiffness, energy, stress, strain, elastic modulus, and toughness. MFCs were fixed in 70% ethanol, processed undecalcified, and polished sections, approximately 70 µm thick (Exakt Micro Grinding system) were carbon-coated. Backscattered electron images were collected on a scanning electron microscope (Hitachi SU3500) at 5 kV and working distance of 5 mm. Bone in-growth within the porous coating was quantified using software (ImageJ). Statistical comparisons were made using a two-way ANOVA and Fisher's LSD post-hoc test (Statistica v.8).

Biomechanical evaluation of the bone-implant interface revealed that by 16 weeks, Gription-coated implants exhibited higher force (2455±1362 N vs. 1002±1466 N, p=0.046) and stress (12.60±6.99 MPa vs. 5.14±7.53 MPa, p=0.046) at failure, and trended towards higher stiffness (11510±7645 N/mm vs. 5010±8374 N/mm, p=.061) and modulus of elasticity (591±392 MPa vs. 256±431 MPa, p=0.61). Similarly, by 16 weeks, bone in-growth in Gription-coated implants was approximately double that measured in Porocoat (6.73±3.86 % vs. 3.22±1.52 %, p=0.045). No statistically significant differences were detected at either 4 nor 8 weeks, however, qualitative observations of the exposed bone-implant interface, made following push-out testing, showed more bony material consistently adhered to Gription compared to Porocoat at all three time points. High variability is attributed to implant placement, resulting from the small visual window afforded during surgery, unique curvatures of the condyles, and presence of the extensor digitorum longus tendon which limited access to the LFC.

Ultra-porous titanium coatings, know commercially as Gription and Porocoat, were compared for the first time in a challenging intra-articular ovine model. Gription provided superior fixation strength and bone in-growth, suggesting it may be beneficial in hip replacement surgeries where bone stock quality and quantity may be compromised.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_10 | Pages 2 - 2
1 Oct 2020
Gross AE Backstein D Kuzyk P Safir O Iglesias SL
Full Access

Patients with longstanding hip fusion are predisposed to symptomatic degenerative changes of the lumbar spine, ipsilateral knee and contralateral hip1. In such patients, conversion of hip arthrodesis to hip replacement can provide relief of such symptoms2 – 4. However, this is a technically demanding procedure associated with higher complication and failure rates than routine total hip replacement.

The aim of this study was to determine the functional results and complications in patients undergoing hip fusion conversion to total hip replacement, performed or supervised by a single surgeon.

Twenty-eight hip fusions were converted between 1996 and 2016. Mean follow up was 7 years (3 to 18 years). The reasons for arthrodesis were trauma 11, septic arthritis 10, and dysplasia 7. The mean age at conversion was 52.4 years (26 to 77).

A trochanteric osteotomy was performed in all hips. Uncemented components were used. A constrained liner was used in 7 hips. Heterotopic ossification prophylaxis was not used in this series.

HHS improved a mean of 27 points (37.4 pre-op to 64.3 post-op). A cane was used in 30% of patients before conversion and 80% after.

Heterotopic ossification occurred in 12 (42.9%) hips. There was 2 peroneal nerve injuries, 1 dislocation, 1 GT non-union and 1 infection.

There have been 5 revisions; 2 for aseptic loosening, 1 for infection, 1 for recurrent dislocation and 1 for leg length discrepancy.

Conversion of hip fusion to hip replacement carries an increased risk of heterotopic ossification and neurological injury. We advise prophylaxis against heterotropic ossification. When there is concern about hip stability we suggest that the use of a constrained acetabular liner is considered. Despite the potential for complications, this procedure had a high success rate and was effective in restoring hip function.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_IX | Pages 68 - 68
1 Mar 2012
Higgins G Kuzyk P Olsen M Waddell J Schemitsch E
Full Access

The aim of this study was to determine the mid-term survival and functional outcomes of the Scorpio Total Stabilised Revision Knee prosthesis.

Sixty seven prostheses were implanted between November 2001 and April 2008. 42 females and 23 males. Average patient age was 67.9 (37-89). Outcomes were assessed with WOMAC (Western Ontario and McMaster Universities Osteoarthritis index), Knee Society Scores, Short Form-8 scores, patient satisfaction and radiological review. Average follow-up was over 3 years (8-93mths) with 95% follow-up.

One patient died post operatively and 4 patients from 18 months to 5 years post-operatively. Average body mass index was 32.9 (21.5- 55.1). 65% (42 patients) of patients operated on had a Body Mass Index of greater than 30. 48 patients were ASA 3 or greater.

Thirteen second stage revision arthroplasties were performed after treatment for infected arthroplasty surgery. Twenty six prostheses were revised for aseptic loosening. Eight prostheses were revised for stiffness and 9 for worn polyethylene inserts. Five prostheses were revised for symptomatic tibio-femoral instability/ dislocation and one for patello-femoral instability. Two revisions were performed for peri-prosthetic fractures and 2 for previously operated tibial plateau fractures.

Seven patients required tibial tubercle osteotomy and seven a rectus snip. Thirty one patients had greater than a 15mm polyethylene insert. The average KSS increased from 49 pre-operatively to 64 at 7.5 years. The average KS function score increased from 21 to 45. 68% (44) of patients had other significant joint involvement which affected daily function. 24% of patients were unsatisfied with the outcome. 89.5% of patients radiographs were assessed for loosening or subsidence. 51% of femoral components and 36% of tibial components had radiosclerotic lines. The surface area of each implant including the stem was measured on antero-posterior and lateral images. The degree of lucency was calculated as a percentage and in mm from the component.

Two prostheses (3%) were revised for deep infection, one (1.5%) for stiffness and one for aseptic loosening (1.5%). Complications included a popliteal artery injury, two superficial wound infections, and one patella tendon avulsion.

Survival rate for revision of prosthesis was 87% at 7.5 years and 90% excluding infection. Success of second stage revision arthroplasty after treatment of infection was 92%.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_IX | Pages 4 - 4
1 Mar 2012
Higgins G Kuzyk P Tunggal J Waddell J Schemitsch E
Full Access

The purpose of this study was to evaluate 3 methods used to produce posterior tibial slope.

Methods

110 total knee arthroplasties performed during a 4 year period were included(2005 to 2009). All operations were performed by 2 surgeons. Group 1 used an extramedullary guide with a 0 degree cutting block tilted by placing 2 fingers between the tibia and the extramedullary guide proximally and three fingers distally to produce a 3 degree posterior slope (N=40). Group 2 used computer navigation to produce a 3 degree posterior slope (N=30). Group 3 used an extramedullary guide placed parallel to the anatomic axis of the tibia with a 5 degree cutting block to produce a 5 degree slope (N=40).

Posterior tibial slope was measured by 2 independent blinded reviewers. The reported slope for each sample was the average of these measurements. All statistical calculations were performed using SPSS Windows Version 16.0 (SPSS Inc., IL, USA).

Results

There was excellent agreement for the mean posterior slopes measured by the 2 independent reviewers. The linear correlation constant was 0.87 (p<0.01). The paired t test showed no significant difference (p=0.82).

The measurements for Group 1 (4.15±3.24 degrees) and Group 2 (1.60±1.62 degrees) were both significantly different to the ideal slope of 3 degrees (p=0.03 for Group 1 and p<0.01 for Group 2). The mean posterior tibial slope of Group 3 (5.00±2.87 degrees) was not significantly different to the ideal posterior tibial slope of 5 degrees (p=1.00). Group 2 exhibited the lowest standard deviation.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 436 - 436
1 Nov 2011
Higgins G Tunggall J Kuzyk P Schemitsch E Waddell J
Full Access

Posterior slope of the tibial component is an important factor in overall alignment of Total Knee Arthroplasty. The purpose of this study was to compare the accuracy and reproducibility of tibial bone cuts utilizing traditional extramedullary 0 degree and angled 5 degree cutting blocks, and computer aided navigation, in primary total knee arthroplasty.

We identified 3 groups of patients. Group one were primary total knees performed using an extramedullary 0 degree cutting block for posterior slope, group 2 were performed using an extramedullary 5 degree cutting block and the third group were performed with computer navigation. Patients in all 3 groups were age and sex matched. All operations were performed by residents or clinical fellows, under the supervision of the senior authors. Lateral digital radiographs were reviewed and posterior slope was determined in a standardized fashion. Two independent blinded researchers assessed the posterior slope using Siemens Magicweb software version VA42C_0206.

The average difference from the ideal posterior slope in navigated knees was lower than with non-navigated knees, however this was not significant (p=0.086). The average difference from the ideal posterior slope in computer navigated knees was 1.77 degrees (95% CI=1.28 to 2.26) compared to 2.37 degrees (95% CI=1.56 to 3.17) with the 5 degree cutting block and 2.70 degrees (95% CI=1.73 to 3.66) with the 0 degree block. No absolute significant difference was highlighted between the 3 groups using ANOVA testing (p=0.22).

All three techniques used to obtain ideal tibial slope were accurate. Accuracy was not increased by the use of computer navigation; however navigation resulted in less variation in outcome. The two jig based methods produced similar outcomes and either technique can be used successfully.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 98 - 98
1 May 2011
Kuzyk P Zdero R Shah S Olsen M Higgins G Waddell J Schemitsch E
Full Access

Minimizing tip-apex distance has been shown to reduce clinical failure of sliding hip screws used to fix peritro-chanteric fractures. The purpose of this study was to determine if such a relationship exists for the position of the lag screw in the femoral head using a cephalomedullary device.

Methods: Thirty intact synthetic femur specimens (Model #3406, Pacific Research Laboratories, Vashon, WA) were potted into cement blocks distally for testing on an Instron 8874 (Instron, Canton, MA). A long cephalomedullary nail (Long Gamma 3 Nail, Stryker, Mahwah, NJ) was inserted into each of the femurs. An unstable four-part fracture was created, anatomically reduced, and repaired using one of 5 lag screw placements in the femoral head:

Superior (N=6),

Inferior (N=6),

Anterior (N=6),

Posterior (N=6),

Central (N=6).

Mechanical tests were repeated for axial, lateral and torsional stiffness. All specimens were radiographed in the anterioposterior and lateral planes and tip-apex (TAD) distance was calculated. A calcar referenced tip-apex distance (CalTAD) was also calculated.

ANOVA was used to compare means of the five treatment groups. Linear regression analysis was used to compare axial, lateral and torsional stiffness (dependant variables) to both TAD and CalTAD (independent variables).

Results: ANOVA testing proved that the mean axial (p< 0.01) and torsional stiffness (p< 0.01) between the 5 groups was significantly different, but lateral stiffness was not statistically different (p=0.494). Post hoc analysis showed that the inferior lag screw position provided significantly higher mean axial stiffness (568.14±66.9N/ mm) than superior (428.0±45.6N/mm; p< 0.01), anterior (443.2±45.4N/mm; p=0.02) and posterior (456.7±69.3N/ mm; p=0.04) lag screw positions. There was no significant difference in mean axial stiffness between inferior (568.14±66.9N/mm) and central (525.4±81.7N/mm) lag screw positions (p=0.77). Post hoc analysis revealed significantly less mean torsional stiffness for the superior lag screw position compared to other lag screw positions (p< 0.01 all 4 pairings). There were no significant correlations between TAD and axial (r=−0.33, p=0.08), lateral (r=−0.22, p=0.24) or torsional (r=0.08, p=0.69) stiffness. There were significant correlations between CalTAD and axial (r=−0.66, p< 0.01), lateral (r=−0.38, p=0.04) and torsional (r=−0.38, p=0.04) stiffness.

Discussion: Our results suggest that placement of the lag screw inferiorly in the femoral head when using a cephalomedullary nail to treat an unstable peritrochanteric fracture results in the stiffest construct in axial and torsional biomechanical testing. A simple radiographic measurement, CalTAD, provides an intraoperative method of determining optimal cephalomedullary nail lag screw position to achieve greatest construct stiffness.