header advert
Results 1 - 2 of 2
Results per page:
Applied filters
Content I can access

Trauma

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 82 - 82
1 Sep 2012
Benjamin G Zadegan F Hannouche D Nizard R
Full Access

Limb length disparity is a frequent complication after hip surgery inducing many surgeon-patients conflicts. To date no study has been able to precisely quantify such limb length disparity. EOS® system, currently validated to measure lower limb parameters, allows from two bi-dimensional numerical orthogonal radiographies in standing position to obtain a tri-dimensional reconstruction of lower limbs. A computerized system achieves the parameters calculation.

The aim of this study is to precisely measure the limb length disparities and the other hip parameters following total hip arthroplasty surgical procedure, by using a standard X-rays and using EOS® three-dimensional reconstructions.

Twenty-eight patients programmed for total hip arthroplasty have been included (i.e. thirty lower limbs). Two independent performers have carried out twice the measures either on standard X-rays and using three-dimensional reconstructions of the lower limb disparities prior and after the surgical procedure.

The inter and intra-observer reproducibility for the measure of the lower limb disparities have been of the EOS® measures have been respectively of 0.854 and 0.865 and for the standard X-rays of 0.717 and 0.726.

Mean length disparity observed was before Total Hip Arthroplasty of −0.328 cm (0.705; −1.266/0.530) and was of 0.088 mm (1.326; −1.635/0.632) after. We are able to decrease the lower limbs disparity in 69.1% and for the average of 0,416cm.

Using EOS® system has allowed assessing with greater precision the possibility to restore equal lower limb length.

This assessment has permitted introducing a new planning procedure including EOS® imaging associated to the fusion of the prosthetic tri-dimensional image in order to achieve adequate lower limb length.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 401 - 401
1 Sep 2012
Aurégan J Bérot M Magoariec H Hoc T Bégué T Hannouche D Zadegan F Petite H Bensidhoum M
Full Access

Introduction

Osteoporosis is a metabolic disease of the bone responsible for a loss of bone resistance and an increase in fracture risk. World Health Organization (WHO) estimations are about 6.3 millions of femoral neck fractures in the world by 2050. These estimations make osteoporosis a real problem in term of public health.

Knowledge in biological tissues mechanical behaviour and its evolution with age are important for the design of diagnosis and therapeutic tools. From the mechanical aspect, bone resistance is dependent on bone density, bone architecture and bone tissue quality. If the importance of bone density and bone architecture has been well explored, the bone tissue quality still remains unstudied because of the lack of biomechanical tools suitable for testing bone at this microscopic dimension.

Therefore the goal of this study is to estimate the osteoporotic cancellous bone tissue mechanical behaviour at its microscopic scale, using an approach coupling mechanical assays and digital reconstruction.

Materials and methods

The experimental study is based on cancellous bone tissue extracted from human femoral head. Forty 8mm diameters bone cylinders have been removed from femoral head explanted after a femoral neck fracture treated by arthroplasty. These cylinders have been submitted to a digitally controlled compressive trial. Before and after the trials, microscanner analyses with an 8 μm spatial resolution have been realized in order to determine the micro structural parameters. The cylinders have been rebuilt with the digital model-building in order to estimate the mechanical behaviour and the bone quality.