header advert
Results 1 - 5 of 5
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 9 - 9
1 Feb 2020
Vendittoli P Lavigne M Pellei K Desmeules F Masse V Fortier L
Full Access

INTRODUCTION

In recent years, there has been a shift toward outpatient and short-stay protocols for patients undergoing total hip arthroplasty (THA) and total knee arthroplasty (TKA). We developed a peri-operative THA and TKA short stay protocol following the Enhance Recovery After Surgery principles (ERAS), aiming at both optimizing patients’ outcomes and reducing the hospital length of stay. The objective of this study was to evaluate the implementation of our ERAS short-stay protocol. We hypothesized that our ERAS THA and TKA short-stay protocol would result in a lower complication rate, shorter hospital length of stay and reduced direct health care costs compared to our standard procedure.

METHODS

We compared the complications rated according to Clavien-Dindo scale, hospital length of stay and costs of the episode of care between a prospective cohort of 120 ERAS short-stay THA or TKA and a matched historical control group of 150 THA or TKA.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_IX | Pages 66 - 66
1 Mar 2012
Getgood A Henson F Lynn A Fortier L Brooks R Rushton N
Full Access

Introduction

The purpose of this study was to investigate whether combining PRP or concentrated bone marrow aspirate (CBMA) with a biphasic collagen/glycosaminoglycan (CG) scaffold would improve the outcome of the treatment of full thickness osteochondral defects in sheep.

Materials and Methods

Osteochondral defects (5.8×6mm) were created in the medial femoral condyle (MFC) and the lateral trochlea sulcus (LTS) of the stifle joints of 24 sheep. Defects were either left empty or filled with a 6×6mm CG scaffold, either on its own or in combination with PRP or CBMA (n=6). At 6 months the sheep were euthanised, and the repair tissue subjected to mechanical testing, gross morphological analysis, semi quantitative histological scoring and immunohistochemical staining including types I, II and VI collagen.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 307 - 307
1 Jul 2011
Getgood A Brooks R Fortier L Rushton N
Full Access

Introduction: Platelet rich plasma (PRP) has been hypothesised to be of potential benefit to articular cartilage tissue engineering, through its release of autologous growth factors. The aim of this study was to ascertain whether the addition of thrombin is required to achieve platelet activation and sustained growth factor release in-vitro, when PRP is applied to a collagen based osteochondral scaffold.

Methods: Collagen/glycosaminoglycan scaffolds were fashioned, to which equal combined volumes of test substances were added (n=3): 500μl PRP; 375μl PRP + 125μl autologous thrombin (3:1); 455μl PRP + 45μl bovine thrombin (10:1). One ml of DMEM/F12 medium was added to each scaffold and changed completely at 12/24 hours, and 3/10 days, following which release of TGF-β1, PDGF-AB and bFGF were measured using ELISA. Secondly, equal sized collagen/glycosaminoglycan and polylactide co-glycolide scaffolds were fashioned to which 500μl of PRP were added (n=3). Similar conditions were followed as previously except that only PDGF-AB was assayed.

Results: A similar cumulative release profile of all growth factors was found over the 10 day period. An increase in growth factor release was seen in the PRP only group at all time points with PDGF-AB in particular reaching statistical significance at all time points (p< 0.006). These findings remained apparent when a correction for volume was made (p< 0.028) suggesting a particular role of the collagen in platelet activation. This was shown in the second experiment, in which a significantly increased cumulative volume of PDGF-AB was released from the collagen/glycosaminoglycan scaffold without thrombin activation (p< 0.04).

Discussion: This study shows that collagen is a potent activator of platelets, requiring no further addition to achieve satisfactory growth factor release when applied clinically. These results suggest that if PRP is combined with polymer scaffolds, it should be activated with thrombin to achieve optimum growth factor release.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_I | Pages 70 - 71
1 Jan 2011
Getgood A Brooks R Fortier L Rushton N
Full Access

Introduction: Platelet rich plasma (PRP) has been hypothesised to be of potential benefit to articular cartilage tissue engineering, through its release of autologous growth factors. The aim of this study was to ascertain whether the addition of thrombin is required to achieve platelet activation and sustained growth factor release in-vitro, when PRP is applied to a collagen based osteochondral scaffold.

Methods: Collagen/glycosaminoglycan scaffolds were fashioned, to which equal combined volumes of test substances were added (n=3): 500μl PRP; 375μl PRP + 125μl autologous thrombin (3:1); 455μl PRP + 45μl bovine thrombin (10:1). One ml of DMEM/F12 medium was added to each scaffold and changed completely at 12/24 hours, and 3/10 days, following which release of TGF-β1, PDGF-AB and bFGF were measured using ELISA. Secondly, equal sized collagen/glycosaminogly-can and polylactide co-glycolide scaffolds were fashioned to which 500μl of PRP were added (n=3). Similar conditions were followed as previously except that only PDGF-AB was assayed.

Results: A similar cumulative release profile of all growth factors was found over the 10 day period. An increase in growth factor release was seen in the PRP only group at all time points with PDGF-AB in particular reaching statistical significance at all time points (p< 0.006). These findings remained apparent when a correction for volume was made (p< 0.028) suggesting a particular role of the collagen in platelet activation. This was shown in the second experiment, in which a significantly increased cumulative volume of PDGF-AB was released from the collagen/glycosaminoglycan scaffold without thrombin activation (p< 0.04).

Discussion: This study shows that collagen is a potent activator of platelets, requiring no further additive to achieve satisfactory growth factor release when applied clinically. These results suggest that if PRP is combined with polymer scaffolds, it should be activated with thrombin to achieve optimum growth factor release.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_III | Pages 412 - 412
1 Jul 2010
Getgood A Brooks R Fortier L Rushton N
Full Access

Introduction: Platelet rich plasma (PRP) has been hypothesised to be of potential benefit to articular cartilage tissue engineering, through its release of autologous growth factors.

The aim of this study was to ascertain whether the addition of thrombin is required to achieve platelet activation and sustained growth factor release in-vitro, when PRP is applied to a collagen based osteochondral scaffold.

Methods: Collagen/glycosaminoglycan scaffolds were fashioned, to which equal combined volumes of test substances were added (n=3): 500μl PRP; 375μl PRP + 125μl autologous thrombin (3:1); 455μl PRP + 45μl bovine thrombin (10:1). One ml of DMEM/F12 medium was added to each scaffold and changed completely at 12/24 hours, and 3/10 days, following which release of TGF-β1, PDGF-AB and bFGF were measured using ELISA. Secondly, equal sized collagen/glycosaminogly-can and polylactide co-glycolide scaffolds were fashioned to which 500μl of PRP were added (n=3). Similar conditions were followed as previously except that only PDGF-AB was assayed.

Results: A similar cumulative release profile of all growth factors was found over the 10 day period. Greater growth factor release was seen in the PRP only group at all time points with PDGF-AB in particular reaching statistical significance at all time points (p< 0.006). These findings remained apparent when a correction for volume was made (p< 0.028) suggesting a particular role of the collagen in platelet activation. This was shown in the second experiment, in which a significantly increased cumulative volume of PDGF-AB was released from the collagen/glycosaminoglycan scaffold without thrombin activation (p< 0.04).

Discussion: This study shows that collagen is a potent activator of platelets, requiring no further addition to achieve satisfactory growth factor release when applied clinically. These results suggest that if PRP is combined with polylactide co-glycolide scaffolds, it should be activated with thrombin to achieve optimum growth factor release.