header advert
Results 1 - 5 of 5
Results per page:
Applied filters
Content I can access

General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 16 - 16
1 Feb 2021
Wade A Beadling A Neville A De Villiers D Collins S Bryant M
Full Access

The vast majority of total hip replacements (THR) implanted today enable modularity by means of a tapered junction; based on the Morse taper design introduced for cutting tools in the 19th Century 1. Morse-type tapers at the head-stem junction provide many benefits, key for a successful surgical outcome such as wider component selection and restoration of better biomechanics 2. However, moving from mono-block to modular designs has not been without its issues. Fluid ingress and motion at the interface has led to a complex multifactorial degradation mechanism better known as fretting-corrosion 3. Fretting-corrosion products created at the junction are commonly associated with adverse local tissue reactions 4.

There is a wide variation in the taper junction of THR differing quite significantly from Morse's original design. Performance of the taper junction has been found to vary with different designs 5,6. However, there is still a lack of common understanding of what design inputs makes a ‘good’ modular taper interface. The aim of this study was to better understand the links between implant design and fretting-corrosion initially focussing on the role of angular mismatch between male and female taper. A combination of experimental approaches with the aid of computational models to assist understanding has been adopted. A more descriptive understanding between taper design, engagement, motion and fretting-corrosion will be developed.

Three different sample designs were created to represent the maximum range of possible angular mismatches seen in clinically available THR modular tapers (Matched: 0.020 ±0.002 °, Proximal: 0.127 ±0.016 °, Distal: −0.090 ±0.002 °). Head-stem components were assembled at 2 kN. Motion and fretting-corrosion at the interface was simulated under incremental uniaxial sinusoidal loading between 0.5–4 kN at 8 intervals of 600 cycles. The different types of motions at the interface was measured using a developed inductance circuit composed of four sensing coils, digital inductance converter chip (LDC1614, Texas Instruments, US) and microcontroller (myRIO, National Instruments, US). Fretting-corrosion was measured using potentiostatic electrochemical techniques with an over potential of +100 mV vs OCP (Ivium, NL). Complimentary finite element (FE) models were created in Ansys (Ansys 19.2, US).

Under uniaxial loading, the ‘matched’ modular taper assemblies corroded most and allowed the greatest pistoning motion due to a seating action. ‘Distal’ and ‘proximal’ engaged modular tapers showed reduced corrosion and seating when compare to the ‘matched’ components. However the kinetics of corrosion and motion were interface dependent. It is hypothesized, and complimented by FEA analysis, that lower initial contact stress in the ‘matched’ modular tapers allows for greater subsidence and depassivation of the oxide layer and higher corrosion. ‘Matched’ modular tapers allowed less rotational and toggling motions compared to mismatched tapers, suggesting a reduced mismatch might perform better once the heads have seated over time. Future work involves tests conducted under a surgically relevant impaction force and physiological loading kinematics to develop this descriptive link between taper design, engagement and performance.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 24 - 24
1 Feb 2020
De Villiers D Collins S
Full Access

INTRODUCTION

Ceramic-on-ceramic hip resurfacing offers a bone conserving treatment for more active patients without the potential metal ion risks associated with resurfacing devices. The Biolox Delta ceramic material has over 15 years of clinical history with low wear and good biocompatibility but has been limited previously in total hip replacement to 48mm diameter bearings [1]. Further increasing the diameter for resurfacing bearings and removing the metal shell to allow for direct fixation of the ceramic cup may increase the wear of this material and increase the risk of fracture.

METHODS

Eighteen implants (ReCerf™, MatOrtho, UK; Figure1) were wear tested; six were ⊘40mm (small) and twelve ⊘64mm (large). All small and six large implants were tested under ISO 14242 standard conditions for 5 million cycles (mc) at 30° inclination (45° clinically). The six remaining large implants were tested under microseparation conditions in which rim contact was initiated during heel strike of the gait cycle for 5mc. Cups were orientated at 45° inclination (60° clinically) to allow for separation of the head and cup with a reduced 50N swing phase load and a spring load applied to induce a 0.5mm medial-superior translation of the cup. Wear was determined gravimetrically at 0.5mc, 1mc and every mc after.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 25 - 25
1 Feb 2020
De Villiers D Collins S Taylor A Dickinson A
Full Access

INTRODUCTION

Hip resurfacing offers a more bone conserving solution than total hip replacement (THR) but currently has limited clinical indications related to some poor design concepts and metal ion related issues. Other materials are currently being investigated based on their successful clinical history in THR such as Zirconia Toughened Alumina (ZTA, Biolox Delta, CeramTec, Germany) which has shown low wear rates and good biocompatibility but has previously only been used as a bearing surface in THR. A newly developed direct cementless fixation all-ceramic (ZTA) resurfacing cup offers a new solution for resurfacing however ZTA has a Young's modulus approximately 1.6 times greater than CoCr - such may affect the acetabular bone remodelling. This modelling study investigates whether increased stress shielding may occur when compared to a CoCr resurfacing implant with successful known clinical survivorship.

METHODS

A finite element model of a hemipelvis constructed from CT scans was used and virtually reamed to a diameter of 58mm. Simulations were conducted and comparisons made of the ‘intact’ acetabulum and ‘as implanted’ with monobloc cups made from CoCr (Adept®, MatOrtho Ltd, UK) and ZTA (ReCerf ™, MatOrtho Ltd. UK) orientated at 35° inclination and 20° anteversion. The cups were loaded with 3.97kN representing a walking load of 280% for an upper bound height patient with a BMI of 35. The cup-bone interface was assigned a coulomb slip-stick function with a coefficient of friction of 0.5. The percentage change in strain energy density between the intact and implanted states was used to indicate hypertrophy (increase in density) or stress shielding (decrease in density).


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 108 - 108
1 May 2016
De Villiers D Banfield S Housden J Shelton J
Full Access

Introduction

Revision of total hip replacements (THRS) is predominantly due to aseptic loosening, pain and infection [1]. The current method used to address the risk of infection is to administer antibiotics and to include antibacterial agents into bone cement (if used) and on implant coatings [2–4]. Currently, silver (Ag) coatings have only been applied to titanium hip stems [3]. Cobalt chromium alloy (CoCr) is a widely used orthopaedic alloy which is commonly used as a bearing surface; revisions of joints using this material often describe adverse reactions to the particulate wear debris [1]. This study considers an Ag containing CrN based coating on a CoCr substrate with the aim to reduce cobalt (Co) release and promote antibacterial silver release.

Methods

Silver Chromium Nitride (CrNAg) coatings were developed and applied onto the bearing surfaces of 48 mm diameter metal-on-metal THRs. Three coatings were evaluated: high Ag at the surface (CrNAg+), low Ag at surface (CrNAg-) and uniform Ag (CrNAg=). All bearings were tested under ISO 14242-3 conditions for 0.17 million cycles (mc) representing approximately 2 months use in vivo. Wear was determined gravimetrically; Ag and Co levels in the lubricant were measured using graphite furnace atomic absorption spectroscopy. Testing of the CrNAg= bearings were continued to 2mc under standard conditions; CrNAg- bearings to 5mc incorporating lateralisation, which created separation at swing phase and rim contact at heel strike. Wear volume and Ag/Co release were monitored at 0.33, 0.67, 1mc and every mc thereafter.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 281 - 281
1 Dec 2013
De Villiers D Kinbrum A Traynor A Collins S Banfield S Housden J Shelton J
Full Access

Introduction

Vitamin-E has been introduced into highly-crosslinked polyethylene liners to reduce the oxidation potential of the material while maintaining low wear rates. However, little has been reported on adverse testing of the material with one test on diffused vitamin-E polyethylene [1] and no adverse tests of vitamin-E blended polyethylene reported. Adverse testing of crosslinked polyethylene has focused on the use of large diameters, the incorporation of third body particles, roughening of the counterface or severe activity [2–4]. This investigation considers the wear of vitamin-E blended highly-crosslinked polyethylene under standard and adverse conditions articulating against uncoated and chromium nitride (CrN) coated metal heads.

Methods

Seven metal heads were tested against prototype ϕ52 mm 0.1 wt% vitamin-E blended highly-crosslinked polyethylene liners (Corin, UK). Three heads remained as cast double heat treated metal (MoP) while four, of similar metallurgy, were coated with CrN via electron beam physical vapour deposition (CrNoP) (Tecvac, UK) and polished to a similar surface finish. Tests were conducted for 5 million cycles (mc) under conditions described in ISO 14242–3: 2009. Alumina particles (mean size 2.4 μm) at concentrations of 0.15 mg/mL were added to the lubricant for 1 mc to consider the effect of severe head damage. Testing continued for a further 1 mc without the presence of the particles and then 3 jogging intervals (14,400 cycles each) were conducted at slow, medium and fast speeds [3]. Wear volume was determined gravimetrically for the heads and liners and fluid collected throughout the testing was analysed for cobalt concentration using graphite furnace atomic absorption spectroscopy.