header advert
Results 1 - 1 of 1
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 37 - 37
1 Feb 2017
Jones H Chun A Kim R Gonzalez J Noble P
Full Access

Introduction

Corrosion products from modular taper junctions of hip prostheses have been implicated in adverse local tissue reactions after THR. Numerous factors have been proposed as the root causes of this phenomenon, including implant design and materials, manufacturing variables, intraoperative assembly, and patient lifestyle. As significant taper damage only occurs in a few percent of cases of THR, we have addressed this complication using a “forensic” examination of retrieval specimens to gain insight into the factors initiating the cascade leading to irreversible damage of the modular interface. In this study we report the categorization of over 380 retrievals into groups having shared damage patterns, metallic composition, and interface surface geometries to isolate the genesis of mechanically-assisted corrosion and its relation to intraoperative assembly, manufacturing, and postoperative loading.

Methods

A total of 384 femoral components were examined after retrieval at revision THR. The implants were produced by a diverse range of manufacturers, 271 in CoCr, and 113 in TiAlV, with both smooth (253) and machined (131) tapers. Initially, the implants were sorted into groups based on composition and taper roughness. Each trunnion was then cleaned to remove organic deposits and examined by stereomicroscopy at X6-X31. After an initial pilot study, we developed a classification system consisting of 8 basic patterns of damage (Table 1). We then classified all 384 trunnions according to this 8-group system. The prevalence of each pattern was calculated on the basis of both composition and surface texture of the trunnion.