header advert
Results 1 - 4 of 4
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_4 | Pages 36 - 36
1 Feb 2014
Matthews J Hall A Lonsdale C Hernon M Murray A Taylor I Jackson B Toner J Guerin S Hurley DA
Full Access

Purpose of the study and background

The CONNECT trial evaluated a theory-based intervention to increase low back pain patients' adherence to treatment recommendations through physiotherapists' communication behaviour. Bridging the gap between evidence and evidence-based practice, we aimed to develop an implementation intervention to support physiotherapists in translating the CONNECT communication training into practice.

Methods and results

A systematic approach was used to develop this intervention. 1. Focus groups underpinned by the Theoretical Domains Framework were conducted to assess CONNECT trained physiotherapists' (n = 9) perceptions of the barriers and enablers to implementing these strategies in practice; the results of which yielded four main domains; two related to factors outside the individual (i.e. social influences and environmental resources), and two related to individuals' motivation and capabilities (i.e. self –efficacy and behavioural regulation). 2. Intervention components (i.e., behavior change techniques (BCT) and mode of delivery) were chosen. BCTs were mapped to the identified domains (e.g., the BCT of self-monitoring mapped to the self-efficacy domain) and audit and feedback focused coaching was selected as the main mode of delivery based on empirical evidence and feasibility. 3. Outcome measures were selected to evaluate the proposed changes in physiotherapist practice (i.e., Health Care Climate Questionnaire). This intervention was trialed with physiotherapists (n = 2) using a case-study design. Results from patient consultation audio-recordings and follow-up interviews revealed this intervention supported the translation of evidence-based training into practice and is considered feasible and acceptable to physiotherapists.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 215 - 215
1 Dec 2013
Abdulkarim A Elsibaei A Jackson B Riordan D
Full Access

Introduction

Many surgeons are familiar with the audible change in the sound pitch while hammering a rasp in a long bone during surgeries like Hip Arthroplasty. We have developed a hypothesis indicating that there is a relationship between that sound change and the development of micro-fracture and subsequently full fracture.

Methods

An experiment using porcine femur bone performed by attaching a bone conduction microphone to the distal part of the bone while hammering a rasps of different sizes through the medullary canal till the point where a fracture developed. The transduce sound resonances created in the bone during rasping are converted to an analogue electrical signals that were sent to a Zoom H4n handheld recording device which recorded the signal to a disk.

The recorded signals subsequently were analysed using Matlab software and a spectrum analyzer using Fast Fourier Transforms (FFT).


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 1 - 1
1 Dec 2013
Abdulkarim A Elsibaei A Jackson B Riordan D Rice J
Full Access

Introduction

Proper femoral reaming is a key factor for a successful outcome in cementless hip arthroplasty. Good quality reaming minimizes risks of intra-operative femoral fracture during reaming and prevents poor fitting of the implant which can lead to subsidance of the stem postoperativly. Determining the quality of reaming is largely a subjective skill and dependant on the surgeon's experience with no documented intraoprative method to assess it objectively.

Method

We recorded and analysed the frequencies of sound signals recorded via a bone conduction microphone during reaming of the femoral canal in a series of 28 consecutive patients undergoing uncemented total hip replacement performed by same surgeon. Hammaring sound frequencies and intensity were analysed by mean of computer software. The relationship between the patterns of the recorded reaming sound frequencies compared with surgeon judgment of the reaming quality intraoparativly and post operative x rays. All patients were followed up clinically and radiologically for 2 years after surgery to determine the integrity of the fix and to evaluate the stability of the prosthesis.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 415 - 415
1 Oct 2006
Worboys S Jackson B Birch H
Full Access

Introduction Epidemiological studies have revealed that the incidence of Achilles tendon rupture is increasing and is especially high in middle age. Similarly, in horses, the superficial digital flexor tendon (SDFT) is often injured with older horses being most at risk. Tendons which play a role in elastic energy storage, such as the human Achilles tendon and equine SDFT, are much more susceptible to degenerative change and subsequent rupture than non-energy storing positional tendons, such as the human anterior tibialis tendon and the equine common digital extensor tendon (CDET). These energy storing tendons are required to operate with small safety margins and are likely therefore to incur high levels of micro-damage. The ability to repair micro-damage depends on the capacity for matrix turnover which requires both the capability to synthesise and degrade matrix components. In a previous study we have shown that the levels of matrix degrading enzymes (matrix metalloproteinases) differ significantly between the SDFT and CDET (Faram et al., 2004, Proc. BORS, Bristol) and that some matrix metalloproteinases (MMP-3) increase significantly with increasing age (Eissa et al., 2004, Proc. BSMB, Bristol). The aim of this study was to test the hypothesis that MMP derived fragments of collagen resulting from collagen breakdown are present at higher levels in the energy storing SDFT than the CDET and increase significantly with increasing age.

Methods The SDFT and CDET were harvested from the left forelimb of horses (n=20) ranging in age from skeletal maturity to senescence (5 – 30 years) and tissue from the mid-metacarpal level of each tendon analysed. A commercially available radioimmunoassay kit (Oxford Biosystems) was used to measure levels of the C-terminal telopeptide of type I collagen (ICTP). In addition, DNA levels were measured by a fluorometric assay using Hoechst 33258 dye to give an indication of tissue cellularity and collagen-linked fluorescence was measured to give an indication of the age of the collagen in the matrix. Statistical significance (p = 0.05) was evaluated using a general linear model (SPSS software) to compare tendons (SDFT and CDET) and to determine changes with age.

Results The levels of ICTP were approximately four times higher (p=0.001) in the CDET compared to the SDFT and in both tendons appeared to decrease with increasing age. DNA levels were significantly (p< 0.001) higher in the SDFT than the CDET and these levels did not change significantly with age. The collagen-linked fluorescence was significantly (p< 0.001) higher in the SDFT than the CDET and decreased significantly (p=0.006) with age in both tendons.

Discussion The results demonstrate that the SDFT is more cellular than the CDET and may therefore be expected to be more metabolically active. Contrary to this, collagen-linked fluorescence is higher in the SDFT suggesting that the matrix is older and furthermore the levels of collagen fragments are much lower in the SDFT suggesting that the collagen within the matrix is turned over more rapidly in the CDET than the SDFT. The changes in collagen-linked fluorescence and ICTP levels suggest than collagen turnover decreases with ageing and low turnover may be responsible for SDFT degneration.