header advert
Results 1 - 4 of 4
Results per page:
Applied filters
Content I can access

Research

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 50 - 50
1 Mar 2021
Okazaki Y Furumatsu T Hiranaka T Kamatsuki Y Ozaki T
Full Access

The meniscus is a fibrocartilaginous tissue that plays an important role in controlling the complex biomechanics of the knee. Many histological and mechanical studies about meniscal attachment have been carried out, and medial meniscus (MM) root repair is recommended to prevent subsequent cartilage degeneration following MM posterior root tear. However, there are only few studies about the differences between meniscus root and horn cells. The goal of this study was to clarify the differences between these two cells.

Tissue samples were obtained from the medial knee compartments of 10 patients with osteoarthritis who underwent total knee arthroplasty. Morphology, distribution, and proliferation of MM root and horn cells, as well as gene and protein expression levels of Sry-type HMG box (SOX) 9 and type II collagen (COL2A1) were determined after cyclic tensile strain (CTS) treatment.

Horn cells had a triangular morphology, whereas root cells were fibroblast-like. The number of horn cells positive for SOX9 and COL2A1 was considerably higher than that of root cells. Although root and horn cells showed similar levels of proliferation after 48, 72, or 96 h of culture, more horn cells than root cells were lost following 2-h CTS (5% and 10% strain). SOX9 and COL2A1 mRNA expression levels were significantly enhanced in horn cells compared with those in root cells after 2- and 4-h CTS (5%) treatment.

This study demonstrates that MM root and horn cells have distinct characteristics and show different cellular phenotypes. Our results suggest that physiological tensile strain is important for activating extracellular matrix production in horn cells. Restoring physiological mechanical stress may be useful for promoting healing of the MM posterior horn.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 51 - 51
1 Apr 2018
Kamatsuki Y Furumatsu T Miyazawa S Fujii M Kodama Y Hino T Ozaki T
Full Access

Purpose

Injuries of the meniscal attachments can lead to meniscal extrusion. We hypothesized that the extent of lateral meniscal extrusion (LME) was associated with the severity of the lateral meniscus posterior root tear (LMPRT). This study aimed to evaluate the relationship between preoperative LME and arthroscopic findings of LMPRT in knees with anterior cruciate ligament (ACL) injury.

Methods

Thirty-four knees that had LMPRTs with concomitant ACL injuries on arthroscopy were evaluated. Patients were divided into two groups, partial and complete root tears, via arthroscopic findings at the time of ACL reconstruction. We retrospectively measured preoperative LMEs using magnetic resonance imaging (MRI). Statistical analysis was performed using the Mann-Whitney U-test and Chi-square test.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 16 - 16
1 May 2017
Furumatsu T Inoue H Miyazawa S Tanaka T Fujii M Ozaki T
Full Access

Background

Meniscus repair can restore the function of torn meniscus in anterior cruciate ligament (ACL)-reconstructed knees. However, few reports investigate the relationship between concurrent meniscus repair with ACL reconstruction and postoperative meniscal position. This study aimed to evaluate the size of the medial meniscus in patients who underwent ACL reconstruction and concomitant all-inside medial meniscus repair.

Methods

This study received the approval of our Institutional Review Board. Twenty patients underwent ACL reconstruction and concurrent medial meniscus repair of a peripheral longitudinal tear using the FasT-Fix meniscal repair device. Medial tibial plateau length (MTPL) and width (MTPW) were determined by radiographic images. We evaluated the Lysholm score, anteroposterior instability (difference in KT-2000 arthrometer measurement), meniscal healing, and magnetic resonance imaging (MRI)-based medial meniscal length (MML) and width (MMW). The healing status of repaired medial meniscus was assessed by 2nd-look arthroscopy.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 14 - 14
1 Apr 2017
Tanaka T Furumatsu T Miyazawa S Fujii M Inoue H Ozaki T
Full Access

Background

Hyaluronan (HA) promotes extracellular matrix (ECM) production and inhibits the activity of matrix degrading enzymes in chondrocytes. The meniscus is composed of the avascular inner and vascular outer regions. Inner meniscus cells have a chondrocytic phenotype compared with outer meniscus cells. In this study, we examined the effect of HA on chondrocytic gene expression in human meniscus cells.

Methods

Human meniscus cells were prepared from macroscopically intact lateral meniscus. Inner and outer meniscus cells were obtained from the inner and outer halves of the meniscus. The proliferative activity of meniscus cells was evaluated by WST-1 assay in the presence or absence of HA (MW = 600–1200 kDa; Seikagaku). Gene expression of SOX9, COL2A1, and COL1A1 was assessed by a quantitative real-time PCR analysis. The effect of HA on the gene expression and cellular proliferation was investigated under the treatment of interleukin (IL)-1α. Meniscal samples perforated by a 2-mm-diameter punch were maintained for 3 weeks in HA-supplemented media. Cultured meniscal samples were evaluated by histological analyses.