header advert
Results 1 - 2 of 2
Results per page:
Applied filters
Content I can access

Knee

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 70 - 70
7 Aug 2023
Bartolin PB Shatrov J Ball SV Holthof SR Williams A Amis AA
Full Access

Abstract

Introduction

Previous research has shown that, notwithstanding ligament healing, properly selected MCL reconstruction can restore normal knee stability after MCL rupture. The hypothesis of this work was that it is possible to restore knee stability (particularly valgus and AMRI) with simplified and/or less-invasive MCL reconstruction methods.

Methods

Nine unpaired human knees were cleaned of skin and fat, then digitization screws and optical trackers were attached to the femur and tibia. A Polaris stereo camera measured knee kinematics across 0o-100o flexion when the knee was unloaded then with 90N anterior-posterior force, 9Nm varus-valgus moment, 5Nm internal-external rotation, and external+anterior (AMRI) loading. The test was conducted for the following knee conditions: intact, injured: transected superficial and deep MCL (sMCL and dMCL), and five reconstructions: (long sMCL, long sMCL+dMCL, dMCL, short sMCL+dMCL, short sMCL), all based on the medial epicondyle isometric point and using 8mm tape as a graft, with long sMCL 60mm below the joint line (anatomical), short sMCL 30mm, dMCL 10mm (anatomical).


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_IX | Pages 73 - 73
1 Mar 2012
Iranpour F Merican AM Hirschmann MT Cobb JP Amis AA
Full Access

Introduction

Differing descriptions of patellar motion relative to the femur have resulted from many in-vitro and in-vivo studies. The aim of this study was to examine the tracking behaviour of the patella. We hypothesized that patellar kinematics would correlate to the trochlear geometry.

Method

Seven normal fresh-frozen knees were CT scanned and their kinematics with quadriceps loading was measured by an optical tracker system and calculated in relation to the previously-established femoral axes. CT scans were used to reliably define frames of reference for the femur, tibia and the patella. A novel trochlear axis was defined, between the centres of best-fit medial and lateral trochlear articular surfaces spheres.