header advert
Results 1 - 2 of 2
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 463 - 463
1 Nov 2011
Amadi HO Wallace AL Hansen UN Bull AMJ
Full Access

Introduction: Classical studies have defined axes from prominent scapular landmarks that have been used to synthesise many applications. The morphology of the scapula is however known to be highly variable between individuals1,2,3. This introduces significant variability on the use of these classical axes for various clinical applications. Also, some of the literatureapplied landmarks were highly dependant on the presence of pathology, thus introducing more variability in the products they parented. This limits accuracy in inter-subject comparisons from such applications. Therefore there is a need to identify and define pathology-insensitive anatomical landmarks that are less variable between individuals than the variability of the overall scapular shape. The aim of this study was to define more scapular axes from clearly identifiable landmarks, analysing these and other classical definitions for the best axis that minimizes variability and is closely related to the scapular clinical frame of reference.

Materials and Method: Fourteen different axes of new and classical definitions from clearly identifiable landmarks were quantified by applying medical images of 21 scapulae. The orientations of the quantified axes were calculated. The plane of the blade of the scapula was defined, bounded by the angulus inferior4, the spine/medial border intersection5 and the most inferolateral point of the infra-glenoid tubercle. This was applied to grade the alienation of the quantified axes from the scapular blade. The angular relationships between individual axes of a spcapula were quantified, averaged over the 21 specimens and their standard deviations (SD) applied to grade the sensitivity of each axis to interscapular variations in the others. The volume of data required to define an axis (VDA) was noted for its dependency on pathology. These three criteria were weighted according to relative importance such that

axes bearing 10° or more from the blade deviated significantly and were eliminated;

insensitivity to scapular morphological variations based on the smallest SD and axes applicability in pathology based on VDA of the remaining axes were graded for the final result.

Results: A least square line through the centre of the spine root was the most optimal medio-lateral axis. The normal to the plane formed by the spine root line and a least square line through the centre of the lateral border ridge was the most optimal antero-posterior axis.

Conclusion: These body-fixed axes are closely aligned to the cardinal planes6 in the anatomical position and thus are clinically applicable, specimen invariant axes that can be used in generalised and patient-specific kinematics modelling.


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_II | Pages 168 - 168
1 Apr 2005
Balendran R Wallace AL
Full Access

Aim Radio-frequency electrical energy and mechanical shaving are often used for resection of soft tissues during arthroscopic reconstructive procedures. The effects of these techniques on tendon are not yet clearly understood. This study compared the effects of radio-frequency ablation with mechanical shaving on ovine tendon, using histological and ultra-structural techniques.

Methods: A single cut using a scalpel blade was used to create a standardised reproducible lesion in 12 freshly harvested ovine infraspinatus tendons. Each lesion was then subjected to either bipolar radio-frequency ablation or mechanical shaving. Specimens were then processed for light and electron microscopy.

Results: The radio-frequency treated samples showed an area of coagulative necrosis with an average diameter of 2 mm around the lesion. Conversely, the shaved samples showed viable cells up to the edges of the lesion. These findings were supported by ultra-structural appearances, which showed preservation of tendon architecture in shaved samples and widespread denaturation of the tendon matrix with loss of fibrillar structure in the radio-frequency treated samples.

Conclusion: These results indicate that thermal resection of tendon causes an immediate additional 2 mm area of tissue necrosis which is not present after mechanical shaving. These findings may have implications for the success of arthroscopic debridement and tendon repair procedures.