header advert
Results 1 - 4 of 4
Results per page:
Bone & Joint Research
Vol. 4, Issue 10 | Pages 170 - 175
1 Oct 2015
Sandberg OH Aspenberg P

Objectives

Healing in cancellous metaphyseal bone might be different from midshaft fracture healing due to different access to mesenchymal stem cells, and because metaphyseal bone often heals without a cartilaginous phase. Inflammation plays an important role in the healing of a shaft fracture, but if metaphyseal injury is different, it is important to clarify if the role of inflammation is also different. The biology of fracture healing is also influenced by the degree of mechanical stability. It is unclear if inflammation interacts with stability-related factors.

Methods

We investigated the role of inflammation in three different models: a metaphyseal screw pull-out, a shaft fracture with unstable nailing (IM-nail) and a stable external fixation (ExFix) model. For each, half of the animals received dexamethasone to reduce inflammation, and half received control injections. Mechanical and morphometric evaluation was used.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 236 - 236
1 Jul 2014
Sandberg O Aspenberg P
Full Access

Summary

The negative impact of NSAIDs on fracture healing appears not to pertain to fractures in cancellous bone. Possibly this is because of a higher prevalence of MSCs in cancellous bone, making recruitment of distant cells via inflammatory signals less important.

Introduction

It is well established that cox inhibitors (NSAIDs) impair fracture healing, also in humans. However, as they provide good pain relief it is unclear when to avoid these drugs. The healing process in cortical and cancellous fractures differs regarding progenitor cell sources, and inflammation might be involved in the recruitment of cells from distant sources. We therefore hypothesised that fractures in cancellous bone are less sensitive to reduced inflammation due to cox inhibitors.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 228 - 228
1 Jul 2014
Schilcher J Sandberg O Isaksson H Aspenberg P
Full Access

Summary Statement

Atypical femoral fractures consist of a thin fracture line extending through the lateral cortex. The adjacent bone is undergoing resorption and mechanical abrasion and is often replaced with woven bone. The mechanical environment seems to inhibit healing.

Background

The pathophysiology behind bisphosphonate-associated atypical femoral fractures remains unclear. Histological findings at the fracture site itself might provide important clues. So far only one case describing the histological appearance of the fracture has been published.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 235 - 235
1 Jul 2014
Sandberg O Macias B Aspenberg P
Full Access

Summary

These data suggest that PTH treatment for stimulation of bone healing after trauma is not much dependent on mechanical stimulation and therefore, roughly equal treatment effects might be expected in the upper and lower extremities in humans.

Introduction

Stimulation of bone formation by PTH is known to, in part, act via increased mechanosensitivity. Therefore, unloading should decrease the response to PTH treatment in uninjured bone. This has served as a background for speculations that PTH might be less efficacious for human fracture treatment in unloaded limbs, e.g. for distal radial fractures. We analyzed if the connection with mechanical stimulation also pertains to bone formation after trauma in cancellous bone.