header advert
Results 1 - 3 of 3
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 83 - 83
1 Apr 2017
Gindraux F Oudina K Nallet A de Billy B Petite H Obert L
Full Access

Previous clinical studies have shown the efficacy of a foreign body-induced membrane combined with bone autograft for the reconstruction of traumatologic or pathologic large bone defects or, bone non union. This membrane, rich in mesenchymal stromal cells (MSC), avoids bone autograft resorption and promotes consolidation by revascularisation of the bone and secretion of growth factors. Reconstruction requires two different surgical stages: firstly, insertion of a cement spacer in the defect, and secondly, removal of the spacer, preservation of the foreign body-induced membrane and filling of the cavity by bone autograft. The optimal time to perform the second surgical stage remains unclear.

So, we aimed to correlate bone healing and, phenotype and function of cells isolated from the induced membrane, in patients whose second surgery was performed on average after 6 months (i.e. beyond the recommended time of one month). Cell phenotype was determined by flow cytometry and cell function by: alkaline Phosphatase enzyme activity, secretion of calcium and von Kossa staining. Second, using histological and immunohistochemistry studies, we aimed to determine the nature and function of induced membrane over time. Seven patients were included with their consent.

Results showed Treated patients achieved in all cases bone union (except for one patient) and in in vitro and histology and immunohistochemistry gave some indications which need to be completed in the future. First, patient age seemed to be an indicator of bone union speed and recurrent infection, appeared to influence in vitro MSC osteogenic potential and induced membrane structure. Second, we reported, in bone repair situation, the commitment over time in osteogenic lineage of a surprising multipotent tissue (induced membrane) able of vascularisation/ osteogenesis/ chondrogenesis at a precocious time. Finally, best time to perform the second stage (one month) could be easily exceeded since bone union occurred even at very late times.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 114 - 114
1 Jul 2014
Viateau V Manassero M Petite H Logeart-Avramoglou D Sladkova M Oudina K Bensidhoum M
Full Access

Short Summary

The present study demonstrated the feasibility of culturing a large number of standardised granular MSC-containing constructs in a packed bed/column bioreactor that can produce sheep MSC-containing constructs to repair critical-size bone defects in sheep model.

Introduction

Endogenous tissue regeneration mechanisms do not suffice to repair large segmental long-bone defects. Although autologous bone graft remains the gold standard for bone repair, the pertinent surgical technique is limited. Tissue constructs composed of MSCs seeded onto biocompatible scaffolds have been proposed for repairing bone defects and have been established in clinically-relevant animal models. Producing tissue constructs for healing bone defects of clinically-relevant volume requires a large number of cells to heal an approximately 3 cm segmental bone defect. For this reason, a major challenge is to expand cells from a bone marrow aspirate to a much larger, and sufficient, number of MSCs. In this respect, bioreactor systems which provide a reproducible and well-controlled three-dimensional (3D) environment suitable for either production of multiple or large size tissue constructs are attractive approaches to expand MSCs and obtain MSC-containing constructs of clinical grade. In these bioreactor systems, MSCs loaded onto scaffolds are exposed to fluid flow, a condition that provides both enhanced access to oxygen and nutrients as well as fluid-flow-driven mechanical stimulation to cells. The present study was to evaluate bioreactor containing autologous MSCs loaded on coral scaffolds to repair critical-size bone defects in sheep model.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 254 - 254
1 Jul 2008
VIATEAU V GUILLEMIN G CALANDO Y OUDINA K SEDEL L HANNOUCHE D PETITE H
Full Access

Purpose of the study: The objective of this study was to establish an experimental sheep model for a surgical procedure which has been clinically successful for repairing major loss of bone stock: the Masquelet technique.

Material and methods: A 25 mm bone defect was created in a metatarsal bone then filled with a cement filler. After six weeks, the cement was removed after opening the neoformed pseudosynovial membrane. The cavity was left empty in group 1 (n=6) or filled with a morcelized cancellous autograft harvested from the iliac crests in group 1 (n=6).

Results: The surgery was well tolerated in all animals which were able to used the injured limb the day after the operation. Radiographic images and histological findings 24 weeks after surgery demonstrated that healing had not been achieved in all of the animals in group 1. Inversely, healing was achieved in all animals in group 2 at 24 weeks. Immunohistochemistry of the neoformed pseudosynovial demonstrated :

an abundant vascular network,

presence of cells expressing transcription factor CBFA1,

very few inflammatory CD14+ cells (macrophages),

an extracellular matrix positive for type I collagen.

Conclusion: The sheep metatarsal model is a model of critical size with low morbidity. This model could be used to:

evaluate new therapeutic strategies for bone regeneration in conditions close to clinical situations,

study the role of the membrane in bone repair.

The presence of a pseudosynovial membrane might:

be a barrier against the diffusion of bone morphogenetic proteins outside the lesion and

potentially be a reservoir of stem and vascular cells which could be useful for new technologies.