header advert
Results 1 - 2 of 2
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Bone & Joint Open
Vol. 3, Issue 3 | Pages 261 - 267
22 Mar 2022
Abe S Kashii M Shimada T Suzuki K Nishimoto S Nakagawa R Horiki M Yasui Y Namba J Kuriyama K

Aims

Low-energy distal radius fractures (DRFs) are the most common upper arm fractures correlated with bone fragility. Vitamin D deficiency is an important risk factor associated with DRFs. However, the relationship between DRF severity and vitamin D deficiency is not elucidated. Therefore, this study aimed to identify the correlation between DRF severity and serum 25-hydroxyvitamin-D level, which is an indicator of vitamin D deficiency.

Methods

This multicentre retrospective observational study enrolled 122 female patients aged over 45 years with DRFs with extension deformity. DRF severity was assessed by three independent examiners using 3D CT. Moreover, it was categorized based on the AO classification, and the degree of articular and volar cortex comminution was evaluated. Articular comminution was defined as an articular fragment involving three or more fragments, and volar cortex comminution as a fracture in the volar cortex of the distal fragment. Serum 25-hydroxyvitamin-D level, bone metabolic markers, and bone mineral density (BMD) at the lumbar spine, hip, and wrist were evaluated six months after injury. According to DRF severity, serum 25-hydroxyvitamin-D level, parameters correlated with bone metabolism, and BMD was compared.


Orthopaedic Proceedings
Vol. 85-B, Issue SUPP_I | Pages 28 - 28
1 Jan 2003
Shimada K Saito M Nakashima T Wigderowitz C Rowley D Namba J Akita S Yoshikawa H
Full Access

We developed a new type of bioactive bone cement, CAP (Hydroxyapatite composite resin; composed of 77% w/w hydroxyapatite granules and bisphenol-A glycidyl methacrylate-based resin) for bony defect filling. Elastic modulus of CAP is similar to a cortical bone, while it is injectable before hardening and physiologically bonding with bone in 4 to 8 weeks. We present a new method of treatment for unstable Colles’ fracture with this material in clinical use.

Experimental comminuted Colles’ fracture was produced in three fresh frozen cadavara. Fracture was reduced and fixed percutaneously with K-wires. 4.5mm drill hole was opened on the radial cortex 3cm proximal to the fracture site. Comminuted fragments were pushed-up to the subchondral area with a blunt rod and CAP was injected through the same way. After cement hardening, K-wires were removed. X-ray photos were examined before fracture, after fracture and after reconstruction with CAP, in order to evaluate the shape of the radius. CT was examined to evaluate the placement of CAP.

Radiographic parameters of radii were well recovered after reconstruction with CAP. Over correction of the radial length was observed in one bone but good reduction was generally achieved (Table). This means realignment of the distal radioulnar joint, which results in good outcome clinically. In transverse section of CT, 41 to 69% (average 55%) of subchondral area was filled with CAP. Filling of CAP was better in an osteoporotic bone. These results show the usefulness of this material for treatment of unstable Colles’ fracture especially in osteoporotic patients.