header advert
Results 1 - 1 of 1
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_7 | Pages 7 - 7
1 Apr 2014
Silverwood R Fairhurst P Tsimbouri P Sjostrom T Young P Su B Meek R Dalby M
Full Access

Background

Aseptic loosening remains the primary reason for failure of orthopaedic implants. Therefore a prime focus of Orthopaedic research is to improve osteointegration and outcomes of joint replacements. The topography of a material surface has been shown to alter cell adhesion, proliferation and growth. The use of nanotopography to promote cell adhesion and bone formation is hoped to improve osteointegration and outcomes of implants. We have previously shown that 15nm high features are bioactive. The arrangement of nanofeatures has been shown to be of importance and block-copolymer separation allows nanopillars to be anodised into the titania layer, providing a compromise of control of order and height of nanopillars. Osteoblast/osteoclast stem cell co-cultures are believed to give the most accurate representation of the in vivo environment, allowing assessment of bone remodelling related to biomaterials.

Aims

To assess the use of nanotopography on titania substrates when cultured in a human bone marrow derived co-culture method.