header advert
Results 1 - 1 of 1
Results per page:
Applied filters
Content I can access

General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 130 - 130
1 Feb 2017
Ma S Goh E Patel B Jin A Boughton O Cobb J Hansen U Abel R
Full Access

Introduction

Bisphosphonates (BP) are the first-line therapy for preventing osteoporotic fragility fractures. However, concern regarding their efficacy is growing because bisphosphonate use is associated with over-suppression of remodeling. Animal studies have reported that BP therapy is associated with accumulation of micro-cracks (Fig. 1) and a reduction in bone mechanical properties, but the effect on humans has not been investigated. Therefore, our aim was to quantify the mechanical strength of bone treated with BP, and correlate this with the microarchitecture and density of micro-damage in comparison with untreated osteoporotic hip-fractured and non-fractured elderly controls.

Methods

Trabecular bone cores from patients treated with BP were compared with patients who had not received any treatment for bone osteoporotic disease. Non-fractured cadaveric femora from individuals with no history of bone metabolic disease were also used as controls. Cores were imaged in high resolution (∼1.3µm) using Synchrotron X-ray tomography (Diamond Light Source Ltd.) The scans were used for structural and material analysis, then the cores were mechanically tested in compression. A novel classification system was devised to characterise features of micro-damage in the Synchrotron images: micro-cracks, diffuse damage and perforations. Synchrotron micro-CT stacks were visualised and analysed using ImageJ, Avizo and VGStudio MAX.