header advert
Results 1 - 4 of 4
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_VIII | Pages 24 - 24
1 Mar 2012
Floerkemeier T Thorey F Windhagen H von Lewinski G
Full Access

Introduction

The treatment osteonecrosis of the femoral head remains uncertain. Core decompression is the standard technique for the early stages (ARCO I and II). A new alternative is core decompression combined with the insertion of an osteonecrosis rod. This implant is supposed to reduce the intraosseous pressure and to give additional structural support. The aim of this study was to evaluate the clinical and radiological outcome via magnetic resonance imaging (MRI) of this new technique.

Methods

Twenty-three patients were included in this study. All patients underwent a core decompression combined with the insertion of an osteonecrosis rod.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 152 - 152
1 Mar 2009
Floerkemeier T Wellmann M Hurschler C Thorey F Vogt U Windhagen H
Full Access

Introduction: Non-invasive prediction of load bearing capacity during consolidation of distraction osteogenesis and fracture healing would represent a significant advance in the treatment of patients by defining the appropriate point of time for the removal of the fixator externe. Thereby the risk of refracture, malunion and infection could be reduced. Several methods have been proposed in the past to predict the load bearing capacity: dual-energy x-ray absorptiometry (DEXA), stiffness measurements, quantitative computed tomography, quantitative radiography and ultrasound. In this ex-vivo study stiffness- and DEXA-measurements were compared regarding their suitability to predict the load bearing capacity of bone regenerate.

In addition this study analysed how compressive, bending and torsional stiffness as suitable tools were related to the torsional load bearing capacity using a common set of bone regenerate samples of 26 sheep treated with distraction osteogenesis.

Material and Methods: After osteotomy the sheep tibiae were stabilized using an external half-ring Ilizarov fixator. Followed by a 4-day latency period the tibiae were distracted at a rate of 1.25 mm per day in two increments for 20 days. On the 74th day the sheep were sacrificed and tibiae were harvested. The ends of the specimens were embedded in PMMA for further biomechanical testing. Therefore, the specimens were mounted to a sequence of special costume made jigs for compressive testing, 4-point bending and torsional testing in a material testing machine. Stiffness was calculated by regression of the linear part of the load-displacement curves. The maximum torsional moment of the specimens was determined in a final experiment. In addition the bone mineral density (BMD) of the distracted bone tissue was measured using DEXA. The correlation between the maximum torsional moment and the various types of stiffness respectively BMD was analysed to gain information about the suitability predicting the load bearing capacity.

Results: Torsional stiffness exhibits the highest correlation with the maximum torsional moment (r2 = 0.77) followed by bending (ap (r2 = 0.70); ml (r2 = 0.66)) and compressive stiffness (r2 = 0.60). The correlation for BMD with the maximum torsional moment was smallest (r2 = 0.39).

Discussion: This ex-vivo study revealed that the stiffness measurements seem to be a helpful tool to predict the load bearing capacity of bone regenerate. The results of this study showed stiffness measurements as a more suitable mean to determine the load bearing capacity. Within the various types of stiffness measurements torsional stiffness measurements perform slightly better than bending and compressive stiffness measurements. Nevertheless, further studies are necessary to support the results of this study since the specimens failed applying torsional stress.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 29 - 30
1 Mar 2006
Floerkemeier T Hurschler C Witte F Wellmann M Thorey F Halbritter U Windhagen H
Full Access

Introduction Non-invasive prediction of load bearing capacity is an important issue in the advanced clinical treatment of distraction osteogenesis in order to define the appropriate point of time for the removal of the external fixateur. Therefore, non-invasive stiffness measurements were recommended as a promising tool due to the high correlation between strength and various kinds of stiffness: Torsional, bending and compressive.

However, previous experiments only analysed the relationship between a single type of stiffness. This approach neglects the multi-dimensional characteristics of bone loading in compression, bending and torsion.

This study investigates how compressive, bending (ap and ml) and torsional stiffness are related to the torsional load bearing capacity of healing callus tissue using a common set of bone regenerate samples of sheep treated with distraction osteogenesis. In addition, this study compares the evolution of the various kinds of stiffness.

This study provides insight into how the various stiffness modes are suited to predict the load bearing capacity by in-vivo stiffness measurement.

Material and Methods Mid-diaphyseal osteotomies were performed in 26 right tibiae of mature, female domestic sheep. Tibiae were then stabilized using an external half-ring Ilizarov fixator. After a 4-day latency period the tibiae were distracted at a rate of 1.25 mm per day in two increments for 20 days. As a result of a parallel study, the callus was treated with different combinations of growth factors and carrier material resulting in four treatment groups plus a contralateral control group. The sheep were sacrificed and the tibiae were harvested on the 74th day.

The ends of the tibiae were embedded in PMMA and mounted to a sequence of special custom made jigs for compressive testing, 4-point-bending and torsion in a material testing machine.

Stiffness was calculated by regression of the initial linear part of the load-displacement curves.

In a final experiment, the specimens were loaded in torsion until failure to record the ultimate torsional moment.

Results Torsional stiffness exhibits the highest correlation with the ultimate torsional moment (r2 = 0.77), while the ones for compressive (r2 = 0.60) and bending (ap (r2 = 0.70); ml (r2 = 0.66)) are only slightly lower.

Discussion This ex-vivo study in sheep shows that torsional, bending (ap and ml) and compressive stiffness measurements are all suitable means to predict the load bearing capacity of healing callus tissue. Our results show that torsional stiffness measurements perform slightly better than compressive and bending stiffness measurements. However, further studies are necessary to underline the superior performance of torsional stiffness measurements, since the sheep-tibiae were failed by applying torsional stress.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 159 - 160
1 Mar 2006
Thorey F Floerkemeier T Hurschler C Schmeling A Raschke M Windhagen H
Full Access

Introduction: There is a need for new non-invasive, predictable and quantifiable techniques to assess the process of fracture healing and remodelling in bone. There are several methods to monitor the bone healing in-vivo. But these methods either fail as quantitative predictors of the healing process (X-ray) or exhibit complicated and expensive measurement principles. Some known in-vivo stiffness measurement methods have several disadvantages including the risk of bone malalignment. Therefore we compared ex-vivo torsional strength of bone with in-vivo torsional stiffness under minimal load in two animal model of distraction osteogenesis. Additionally the device was tested in an ex-vivo model.

Methods: An external fixator was combined with a rotating double half-ring. The measurement device was fixed to the half-ring during measurements. It was equipped with a linear variable differential transducer, a load cell, and a stepper motor. During measurements the two parts of the half-ring were rotated against each other and the load and displacement were recorded. The slope coefficient after performing a linear regression between data points of moment and displacement curve was defined as stiffness. Afterwards all models were tested in a material testing system as gold standard. This was tested in an in-vivo animal study of tibial distraction (minipigs time of consolidation 10 days/sheeps time of consolidation 50 days).

Results: Between in-vivo initial torsional stiffness and torsional strength in minipigs we found a highly significant (p=0.001) coefficient of determination of 0.82, but we found only a poor correlation (p> 0.05) in sheeps. However, the results of the ex-vivo model showed a high precision and accuracy.

Discussion: The results of this study suggest that the bone regenerate strength of healing bones can be assessed in-vivo by the presented inital stiffness measurement method in the beginning of an early stage of healing as shown in minipigs. But at the end of the healing period the correlation of strength and stiffness leveled off. There is a similar model showing an excellent correlation, that agree with our data. They explained the weakening of the correlation at the end of healing by a transformation of early bone to lamellar bone after a 2/3 consolidation. In summary, the presented device could be a reliable future tool to monitor the healing progress in patients with bone malalignement or fractures in the beginning of the healing period.