header advert
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 59 - 59
1 Jul 2020
Chim Y Cheung W Chow SK
Full Access

It has been previously shown that Low-Magnitude High-Frequency Vibration (LMHFV) is able to enhance ovariectomy-induced osteoporotic fracture healing in rats. Fracture healing begins with the inflammatory stage, and all subsequent stages are regulated by the infiltration of immune cells such as macrophages and the release of inflammatory cytokines including tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and interleukin-10 (IL-10). Therefore, the aim of this study was to investigate the effect of LMFHV treatment on the inflammatory response in osteoporotic fracture healing.

In this study, ovariectomy-induced osteoporotic and sham-operated closed-femoral fracture SD-rats were randomized into three groups: sham control (SHAM), ovariectomized control (OVX-C) or ovariectomized vibration (OVX-V) (n=36, n=6 per group per time point). LMHFV (35Hz, 0.3g) was given 20 min/day and 5 days/week to OVX-V group. SHAM operation and ovariectomy were performed at 6-month and closed femoral fracture was performed at 9-month. Callus morphometry was determined by callus width from weekly radiography. Local expressions of inducible nitric oxide synthase (iNOS) (macrophage M1 marker), CD206 (macrophage M2 marker), TNF-α, IL-6 and IL-10 were detected by immunohistochemistry and quantified by colour threshold in ImageJ, assessed at weeks 1 and 2 post-fracture. Significant difference between groups was considered at p≤0.05 by one-way ANOVA.

Callus formation was higher in OVX-V than that of OVX-C as shown by callus width at weeks 1 and 2 (p=0.054 and 0.028, respectively). Immunohistochemistry results showed that CD206 positive signal and the M2/M1 ratio which indicates the progression of macrophage polarization were significantly higher in OVX-V rats (p=0.053 and 0.049, respectively) when compared to OVX-C at week 1. Area fraction of TNF-α positive signal was significantly higher in SHAM and OVX-V rats at week 1 (p=0.01 and 0.033, respectively). IL-6 signal was also significantly higher in SHAM and OVX-V groups at week 1 (p=0.004 and 0.029, respectively). IL-10 expression was significantly lower in SHAM and OVX-V groups at week 1 (p=0.013 and 0.05, respectively).

Here we have shown that LMHFV treatment promoted the shift from pro-inflammatory stage towards anti-inflammatory stage earlier. It has been reported that the polarization of pro-inflammatory macrophages M1 to anti-inflammatory macrophages M2 was indicative of the endochondral ossification process in the long bone fracture model. Besides, we found that LMHFV treatment enhanced pro-inflammatory markers of TNF-α and IL-6 and suppressed anti-inflammatory marker of IL-10 at week 1, showing that inflammatory response was enhanced at week 1 post-fracture. These inflammatory cytokines involved in fracture healing were shown to coordinate different fracture healing processes such as mesenchymal stem cell recruitment and angiogenesis. Our previous study has demonstrated that ovariectomized rats exhibit lower levels of inflammatory response after fracture creation. Therefore, we report that LMHFV treatment can modulate macrophage polarization from M1 to M2 at an earlier time-point and partly restore the impaired inflammatory response in OVX bones at the early stage of fracture healing that may lead to accelerated healing of osteoporotic fracture as shown by promoted callus formation.


Bone & Joint Research
Vol. 9, Issue 7 | Pages 368 - 385
1 Jul 2020
Chow SK Chim Y Wang J Wong RM Choy VM Cheung W

A balanced inflammatory response is important for successful fracture healing. The response of osteoporotic fracture healing is deranged and an altered inflammatory response can be one underlying cause. The objectives of this review were to compare the inflammatory responses between normal and osteoporotic fractures and to examine the potential effects on different healing outcomes. A systematic literature search was conducted with relevant keywords in PubMed, Embase, and Web of Science independently. Original preclinical studies and clinical studies involving the investigation of inflammatory response in fracture healing in ovariectomized (OVX) animals or osteoporotic/elderly patients with available full text and written in English were included. In total, 14 articles were selected. Various inflammatory factors were reported; of those tumour necrosis factor-α (TNF-α) and interleukin (IL)-6 are two commonly studied markers. Preclinical studies showed that OVX animals generally demonstrated higher systemic inflammatory response and poorer healing outcomes compared to normal controls (SHAM). However, it is inconclusive if the local inflammatory response is higher or lower in OVX animals. As for clinical studies, they mainly examine the temporal changes of the inflammatory stage or perform comparison between osteoporotic/fragility fracture patients and normal subjects without fracture. Our review of these studies emphasizes the lack of understanding that inflammation plays in the altered fracture healing response of osteoporotic/elderly patients. Taken together, it is clear that additional studies, preclinical and clinical, are required to dissect the regulatory role of inflammatory response in osteoporotic fracture healing.

Cite this article: Bone Joint Res 2020;9(7):368–385.