header advert
Results 1 - 6 of 6
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 100 - 100
11 Apr 2023
Salamanna F Brodano G Griffoni C Gasbarrini A Fini M Leggi L
Full Access

Due to the presence of megakaryocytes, platelets and clotting factors, bone marrow aspirate (BMA) tends to coagulate. For the first time, starting from our previous studies on mesenchymal vertebral stem cells, it has been hypothesized that coagulated BMA represents a safe and effective autologous biological scaffold for bone regeneration in spinal surgery. The present research involved advanced preclinical in vitro models and the execution of a pilot clinical study.

Evaluation of cell morphology, growth kinetics, immunophenotyping, clonogenicity, trilineage-differentiation, growth-factors and HOX and TALE gene expression were analyzed on clotted- and un-clotted human V-BMA. In parallel, a pilot clinical study on ten patients with degenerative spine diseases submitted to instrumented posterior arthrodesis, is ongoing to assess the ability of clotted-V-BMA to improve spinal fusion at 6- and 12-months follow-up.

Results demonstrated that clotted-V-BMA have significantly higher growth-factor expression and mesenchymal stem cell (MSCs) viability, homogeneity, clonogenicity, and ability to differentiate towards the osteogenic phenotype than un-clotted-V-BMA. Clotted-V-BMA also highlighted significant reduced expression of PBX1 and of MEIS3 genes negatively involved in osteoblast maturation and differentiation. From December 2020, eight patients have already been enrolled with first promising results that will be finally evaluated in the next two months.

The application of V-BMA-clot as carrier of progenitors and cytokines and as natural scaffold with a structural texture represents a point-of-care orthobiologic product to improve spinal fusion. Clinical application seems to be efficacy, and we will confirm and strengthen these data with the final results of the pilot clinical study.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 101 - 101
11 Apr 2023
Brodano G Griffoni C Facchini G Carretta E Salamanna F Tedesco G Evangelisti G Terzi S Ghermandi R Bandiera S Girolami M Pipola V Fini M Gasbarrini A Leggi L
Full Access

Aneurysmal bone cyst (ABC) of the spine is a locally aggressive benign lesion which can be treated by en bloc resection with wide margin to reduce the risk of local recurrence. To avoid morbidity associated with surgery, selective arterial embolization (SAE) can be considered the first-line treatment for ABCs of the spine. We previously introduced the use of autologous bone marrow concentrate (BMC) injection therapy to stimulate bone healing and regeneration in ABC of the spine. In this prospective study we described the clinical and radiological outcomes of percutaneous injection of autologous BMC in a series of patients affected by ABCs of the spine.

Fourteen patients (6 male, 8 female) were treated between June 2014 and December 2019 with BMC injection for ABC of the spine. The mean age was 17.85 years. The mean follow up was 37.4 months (range 12–60 months). The dimension of the cyst and the degree of ossification were measured by Computed Tomography (CT) scans before the treatment and during follow-up visits.

Six patients received a single dose of BMC, five patients received two doses and in three patients three doses of BMC were administered. The mean ossification of the cyst (expressed in Hounsfield units) increased statistically from 43.48±2.36 HU to 161.71±23.48 HU during follow-up time and the ossification was associated to an improvement of the clinical outcomes. The mean ossification over time was significantly higher in patients treated with a single injection compared to patients treated with multiple injections. No significant difference in ossification was found between cervical and non-cervical localization of the cyst. Moreover, the initial size of the cyst was not statistically associated with the degree of ossification during follow-up.

The results of this study reinforce our previous evidence on the use of BMC as a valid alternative for spinal ABC management when SAE is contraindicated or ineffective.

The initial size of the cyst and its localization does not influence the efficacy of the treatment. However, data suggest that BMC injection could be indicated as treatment of choice for spinal ABC in young adolescent women.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 72 - 72
1 Jan 2017
Barbanti Brodano G Halme J Gasbarrini A Bandiera S Terzi S Ghermandi R Babbi L Boriani S
Full Access

The surgical treatment of spinal deformities and degenerative or oncological vertebral diseases is becoming more common. However, this kind of surgery is complex and associated to a high rate of early and late complications. We retrospectively collected all the major complications observed in the perioperative and post-operative period for surgeries performed at our Division of Spine Surgery in the 2010–2012 period,

285 surgeries were registered in 2010, 324 in 2011 and 308 in 2012. All the complications observed during the procedure and the follow-up period were recorded and classified according to the type (mechanical complications, neurological complications, infection, hematoma, cerebrospinal fluid fistula, systemic complications, death related to the surgery).

In 2010, on 285 surgeries 47 patients (16.5 %) had 69 complications (24.2%): 25.7% for the treatment of oncological diseases, 23% for the treatment of degenerative diseases, 27% for the treatment of pathologies of traumatic origin, 11% for the treatment of spondylodiscitis (infectious diseases). In 2011, on 324 surgeries 35 patients (10.8 %) had 54 complications (16.7%): 16.3% for the treatment of oncological diseases, 16.3% for the treatment of degenerative diseases, 20% for the treatment of pathologies of traumatic origin, 28.6% for the treatment of spondylodiscitis. In 2012, on 308 surgeries, 25 patients (8.1 %) had 36 complications (11.7%): 14.4% for the treatment of oncological diseases, 7.2% for the treatment of degenerative diseases, 16.7% for the treatment of pathologies of traumatic origin, 20% for the treatment of spondylodiscitis.

On 917 spinal surgeries performed from January 2010 to December 2012, 159 complications (17.3%) were recorded, with a prevalence of mechanical complications and infections.

We are also prospectively collecting complications related to 2013–2015, in order to have a larger amount of data and try to detect potential risk factors to be taken into consideration in the decision-making process for complex spinal surgery.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 71 - 71
1 Jan 2017
Barbanti Brodano G Fini M Bandiera S Gasbarrini A Terzi S Ghermandi R Babbi L Girolami M Giavaresi G Boriani S
Full Access

Spinal fusion is one of the most common surgical procedures in spine surgery, whose primary objective is the stabilization of the spine for the treatment of many degenerative, traumatic and oncological diseases of the spine. Autologous bone is still considered the “gold standard” technique for spinal fusion. However, biomaterials which are potentially osteogenic, osteoinductive and osteoconductive can be used to increase the process of spinal fusion. We evaluated two new bone substitutes as an alternative to autologous bone for spinal fusion, using an animal model of large size (adult sheep).

A preclinical study was designed to compare the efficacy of SINTlife® Putty and DBSINT® biomaterials with conventional bone autograft in an ovine model of lumbar spine fusion. SINTlife® is a biomaterial made from hydroxyapatite enriched with magnesium ions, resulting to be very similar to natural bone. DBSint® is a paste composite bone, osteo-inductive, pliable and conformable, consisting of demineralized bone matrix (DBM) carried by hydroxyapatite biomimetics. Eighteen adult female sheep were selected for two-levels spine surgical procedures. The animals were divided in two groups: in Group A, one fusion level was treated with SINTlife® Putty and the other level received cortical-cancellous bone autograft; in Group B, one fusion level was treated with DBSINT® and the other level received cortical-cancellous bone autograft. At the end of the experimental time, all the animals were euthanized. The spine segments were analyzed macroscopically, radiographically, microtomographically, histologically and histomorphometrically.

The SINT-Life® Putty shows a perfect osteointegration in all the histological specimens. A high percentage of newly formed bone tissue is detected, with lots of trabeculae having structure and morphology similar to the pre-existing bone. In all the specimens collected from DBSINT®-treated animals the presence of hydroxyapatite alone is reported but not the demineralized bone matrix. The presence of newly formed bone tissue can be detected in all the specimens but newly formed bone shows very thin and irregular trabeculae next to the cartilage zone, while away from the border of ossification there are thicker trabeculae similar to the pre-existing bone.

The use of the experimental biomaterial SINT-Life® Putty in an ovine model of spine fusion leads to the development of newly formed bone tissue without qualitative and quantitative differences with the one formed with autologous bone. The experimental material DBSINT® seems to lead to less deposition of newly formed bone with wider intertrabecular spaces. Following these results, we planned and submitted to the Ethical Committee a clinical study to evaluate the safety and efficacy of SINT-Life® product in comparison to autologous bone, as an alternative treatment for spine fusion procedures.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 121 - 121
1 Jan 2017
Girolami M Babbi L Gasbarrini A Barbanti Brodano G Bandiera S Terzi S Ghermandi R Boriani S
Full Access

Spinal infections are rare diseases, whose management highlights the importance of a multidisciplinary approach. Although treatment is based on antibiotics, always selected on coltural and antibiogram tests, surgery is required in case of development of spinal instability or deformity, progressive neurological deficits, drainage of abscesses, or failure of medical treatment.

The first step of the algorithm is diagnosis, that is established on MRI with contrast, PET/CT scan, blood tests (CRP and ESR) and CT-guided needle biopsy. Evaluation of response to the specific antibiotic therapy is based on variations in Maximum Standardized Uptake Value (SUVmax) after 2 to 4 weeks of treatment. In selected cases, early minimally invasive surgery was proposed to provide immediate stability and avoid bed-rest.

From 1997 to 2014, 182 patients affected by spinal infections have been treated at the same Institution (Istituto Ortopedico Rizzoli – Bologna, Italy) according to the proposed algorithm. Mean age was 56 years (range 1 – 88). Male to female ratio was 1.46.

Minimum follow-up was 1 year. Infections were mostly located in the lumbar spine (57%) followed by thoracic (37%) and cervical spine (6%). Conservative treatment based on antibiotics needed surgery (open and/or percuteneous minimally invasive) as an adjuvant in 83 patients out of 182 (46%).

Management of spinal infections still remains a challenge in spinal surgery and a multisciplinary approach is mandatory. This algorithm represents the shared decision- making process from diagnosis to the most appropriate treatment and it led to successful outcomes with a low-complication rate.

We present this algorithm developed to organize the various professionals involved (orthopaedic surgeons, nuclear medicine and infective disease specialists, interventional radiologists and anaestesiologists) and set a shared pathway of decision making in order to uniform the management of this complex disease.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 126 - 126
1 Jan 2017
Gasbarrini A Bandiera S Barbanti Brodano G Terzi S Ghermandi R Cheherassan M Babbi L Girolami M Boriani S
Full Access

In case of spine tumors, when en bloc vertebral column resection (VCR) is indicated and feasible, the segmental defect should be reconstructed in order to obtain an immediate stability and stimulate a solid fusion. The aim of this study is to share our experience on patients who underwent spinal tumor en bloc VCR and reconstruction consecutively.

En bloc VCR and reconstruction was performed in 138 patients. Oncological and surgical staging were performed for all patients using Enneking and Weinstein-Boriani-Biagini systems accordingly. Following en bloc VCR of one or more vertebral bodies, a 360° reconstruction was made by applying posterior instrumentation and anterior implant insertion. Modular carbon fiber implants were applied in 111 patients, titanium mesh cage implants in 21 patients and titanium expandable cages in 3 patients; very recently in 3 cases we started to use custom made titanium implants. The latter were prepared according to preoperative planning of en bloc VCR based on CT-scan of the patient, using three dimensional printer.

The use of modular carbon fiber implant has not leaded to any mechanical complications in the short and long term follow-up. In addition, due to radiolucent nature of this implant and less artifact production on CT and MRI, tumor relapse may be diagnosed and addressed earlier in compare with other implants, which has a paramount importance in these group of patients. We did not observe any implant failure using titanium cages. However, tumor relapse identification may be delayed due to metal artifacts on imaging modalities.

Custom- made implants are economically more affordable and may be a good alternative choice for modular carbon fiber implants. The biocompatibility of the titanium make it a good choice for reconstruction of the defect when combined with bone graft allograft or autograft. Custom made cages theoretically can reproduce patients own biomechanics but should be studied with longer follow-up.