header advert
Results 1 - 1 of 1
Results per page:
Applied filters
Content I can access

Trauma

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_14 | Pages 8 - 8
1 Oct 2014
Halai M Ker A Nadeem D Sjostrom T Su B Dalby M Meek R Young P
Full Access

In biomaterial engineering the surface of an implant can influence cell differentiation, adhesion and affinity towards the implant. Increased bone marrow derived mesenchymal stromal cell (BMSC) differentiation towards bone forming osteoblasts, on contact with an implant, can improve osteointegration. The process of micropatterning has been shown to improve osteointegration in polymers, but there are few reports surrounding ceramics.

The purpose of this study was to establish a co-culture of BMSCs with osteoclast progenitor cells and to observe the response to micropatterned zirconia toughened alumina (ZTA) ceramics with 30 µm diameter pits. The aim was to establish if the pits were specifically bioactive towards osteogenesis or were generally bioactive and would also stimulate osteoclastogenesis that could potentially lead to osteolysis.

We demonstrate specific bioactivity of micropits towards osteogenesis with more nodule formation and less osteoclastogenesis. This may have a role when designing ceramic orthopaedic implants.