header advert
Results 1 - 1 of 1
Results per page:
Applied filters
Content I can access

Research

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVIII | Pages 20 - 20
1 Jun 2012
Holloway N Drury C Ritchie I
Full Access

Metal-on-metal (MOM) hip arthroplasty, including resurfacing, has become the subject of recent research and debate. There is the perceived benefit of improved wear rates of bearing surfaces leading to superior durability and performance of these types of implant. An associated feature of MOM bearing surfaces is the generation of metal ions. These can have local and systemic cytotoxic effects. An immunoloigical response has been suggested, however, metal wear debris may cause direct damage to cellular DNA. Studies have shown that release of these ions is related to bearing diameter and component alignment. However, little is known about the relationship between metal ion levels and implant survivorship. The MHRA has published guidelines on the follow-up of patients with MOM implants including measurement of serum ion levels and cross sectional imaging.

Between February 2001 and November 2009, 135 patients (164 hips) had MOM resurfacing arthroplasty at our institution. We report a retrospective analysis of the data generated by review of these patients. Of the 135 patients, 91 were identified for clinical review. Each patient had serum metal ion levels measured, plain AP radiographs of the pelvis examined and, in the presence of raised metal ions, a Metal Artefact Reduction Sequence (MARS) MRI performed. 27 patients (35 hips) had raised metal ion levels (Cobalt and Chromium). Patients with raised metal ion levels had a mean acetabular cup inclination of 52.7 degrees compared with a mean inclination of 48.6 degrees in patients with normal ion levels (p<0.05). MARS MRI in the raised ion group revealed 9 patients with appearances suggestive of ALVAL. A number of these patients had hip revision surgery with the remainder awaiting potential revision.

These findings reflect current evidence suggesting a relationship between sub-optimal component position and raised metal ion levels and an increased rate of ALVAL.