header advert
Results 1 - 1 of 1
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 121 - 121
1 Jan 2016
Kokubo Y Uchida K Sugita D Oki H Negoro K Inukai T Miyazaki T Nakajima H Yoshida A Baba H
Full Access

Total hip arthroplasty (THA) is one of the preferable solutions for regaining ambulatory activity for patients with end-stage osteoarthritis, and the procedure is well developed technically and large numbers of patients benefit from THA worldwide. However, despite the improvements in implant designs and surgical techniques, revision rates remain high, and the number of revisions is expected to increase in the future as a result of the increase in the volume of primary THA and the increase in the proportion of younger, more active patients who are likely to survive longer than their prosthetic implants. In revision THA, associated loss of bone stock in the acetabulum presents one of the major challenges. The aim of the present study was to analyze the clinical and radiographic outcomes and Kaplan-Meier survivorship of patients underwent revision surgeries of the acetabular cup sustaining aseptic loosening. We reviewed consecutive 101 patients (120 hips; 10 men 11 hips; 91 women 109 hips; age at surgery, 66 years, range, 45–85) who underwent acetabular component revision surgery, at a follow-up period of 14.6 years (range, 10–30). For the evaluation of the state of the acebtabulum, acetabular bony defects were classified according to the classification of the AAOS based on the intraoperative findings as follows; type I [segmental deficiencies] in 24 hips, type II [cavity deficiency] in 48 hips, type III [combined deficiency] in 46, and type IV [pelvic discontinuity] in 2. Basically, we used the implant for acetabular revision surgery that cement or cementless cups were for the AAOS type I acetabular defects, cementless cup, or cemented cup with reinforcement device were for type II, cemented cup with reinforcement device were for type III. Follow-up examination revealed that Harris Hip score improved from 42.5±7.8 points before surgery to 76±16.2 points (p<0.05). The survival rates of the acetabular revision surgery with cemented cups, cementless cups, and cemented cups with reinforcement devices were 65.1%, 72.8%, and 79.8%, respectively, however, there was no significant differences between the groups. There were nine cases, which failed in the early stage in the groups of cementless cups and cemented cups with reinforcement devices, because of the instability of the cementless cups or breakage of reinforcement plates caused by inadequate bone grafting. We conclude that the usage of the cementless cups for type I and II acetabular bony defects, and the cemented cups with reinforcement devices for type III bony defects will demonstrate durable long-term fixation in case of adequate contact between acetabular components and host-bone with restoration of bone stock by impaction bone grafting.