header advert
Results 1 - 3 of 3
Results per page:
Applied filters
Content I can access

General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 200 - 200
1 Sep 2012
Queally J Cummins F Brennan S Shelly M O'Byrne J
Full Access

Despite the high prevalence of musculoskeletal disorders seen by primary care physicians, numerous studies have demonstrated deficiencies in the adequacy of musculoskeletal education at multiple stages of medical education. The aim of this study was to assess a newly developed undergraduate module in musculoskeletal medicine.

Methods

A two-week module in musculoskeletal medicine was designed to cover common musculoskeletal disorders that are typically seen in primary care. A previously validated examination in musculoskeletal medicine was used to assess the cognitive knowledge of ninety-two students on completion of the module. A historical control group (seventy-two students) from a prior course was used for comparison.

Results

The new module group (2009) performed significantly better than the historical (2006) control group in terms of score (62.3% versus 54.3%, respectively; p < 0.001) and pass rate (38.4% versus 12.5%, respectively; p = 0.0002).

In a subgroup analysis of the new module group, students who enrolled in the graduate entry program (an accelerated four-year curriculum consisting of students who have already completed an undergraduate university degree) were more likely to perform better in terms of average score (72.2% versus 57%, respectively; p < 0.001) and pass rates (70.9% versus 21.4%, respectively; p < 0.001) compared with students who had enrolled via the traditional undergraduate route. In terms of satisfaction rates, the new module group reported a significantly higher satisfaction rate than that reported by the historical control group (63% versus 15%, respectively; p < 0.001).


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 210 - 210
1 Sep 2012
Cummins F Kelly D Kenny P
Full Access

Background and purpose

The two most common complications of femoral impaction bone grafting are femoral fracture and massive implant subsidence. We investigated fracture forces and implant subsidence rates in embalmed human femurs undergoing impaction grafting. The study consisted of two arms, the first examining the force at which femoral fracture occurs in the embalmed human femur, and the second examining whether significant graft implant/subsidence occurs following impaction at a set force at two different impaction frequencies.

Methods

Using a standardized impaction grafting technique with modifications, an initial group of 17 femurs underwent complete destructive impaction testing, allowing sequentially increased, controlled impaction forces to be applied until femoral fracture occurred. A second group of 8 femurs underwent impaction bone grafting at constant force, at an impaction frequency of 1 Hz or 10 Hz. An Exeter stem was cemented into the neomedullary canals. These constructs underwent subsidence testing simulating the first 2 months of postoperative weight bearing.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVII | Pages 41 - 41
1 May 2012
Cummins F Kenny P Kelly D
Full Access

Summary

A laboratory based study investigating fracture forces and implant subsidence rates in embalmed human femurs undergoing impaction grafting.

Methods

Human femurs were harvested from cadavers for destructive impaction testing. An initial group of femurs underwent destructive impaction testing, using the impaction grafting technique as described by Gie et al, modified, allowing increasing, controlled impaction forces to be applied until femoral fracture occurred.

A second group of embalmed human femurs underwent impaction bone grafting at constant force, with varied impaction frequencies. An Exeter stem was cemented into the neo-medullary canals. These constructs underwent subsidence testing simulating the first 2 months post-operative weight-bearing.