header advert
Results 21 - 40 of 165
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_12 | Pages 32 - 32
1 Jun 2017
Di Laura A Hothi H Henckel J Liow M Kwon Y Skinner J Hart A
Full Access

Dual mobility (DM) cups are designed to improve stability, however have been associated with increased risk of impingement that can ultimately result in intraprosthetic dislocation. It is speculated that the femoral neck plays a role in their performance. We investigated the effect of neck topography on the wear of new-generation liners.

This was a retrieval study involving 70 DM cups implanted with liners made of highly crosslinked polyethylene and paired with two neck types: either highly polished (n=35) or rough necks (n=35). The median time of implantation was 30 months.

The rim edge of all inserts was investigated by two examiners for evidence of contact with the femoral neck, presenting as deformation of the polyethylene. A high precision roundness machine and micro-CT scans of the components were used to measure the size of the deformations observed.

28 of the 35 (80%) DM liners paired with rougher necks had evidence of neck impingement resulting in a raised lip, whilst 8 out of 35 (23%) liners paired with smooth necks had a raised lip; this difference was significant (p<0.0001). The repeatability and the inter-observer reproducibility of the deformation scores was found to be substantial κ >0.70. The height of the raised rims of the DM cups paired with rough necks had a median (range) of 139 µm (72–255), whilst had a median (range) of 52 µm (45–90) with smooth necks, the difference between the groups was significant (p<0.0001).

Liner rim deformation resulting from contact with the femoral neck likely begins during early in-vivo function.

Rough necks can increase the damage on the polyethylene rim in dual-mobility bearing, which may lead to loss of the retentive power of these components over time.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_12 | Pages 16 - 16
1 Jun 2017
Hothi H Henckel J Shearing P Atrey A Skinner J Hart A
Full Access

Several implants have a proven track record of durability and function in patients over many years. As manufacturers' patents expire it is understandable that cheaper generic copies would be considered. There is currently no established, independent method of determining design equivalence between generic and branded orthopaedic implants.

We acquired 10 boxed, as manufactured components consisting of the generic OptiStem XTR model (n=5) and branded Exeter (n=5) femoral stems. Two examiners were blinded to the implant design and independently measured the mass, volume, trunnion surface topography, roughness, trunnion cone angle, CCD angle and femoral offset using peer-reviewed methods. We then compared the stems using these parameters.

We found that the OptiStems (1) were lighter (p<0.001) (2) had a rougher trunnion surface (p<0.001) with a greater spacing and depth of the machined threads (p<0.001), (3) had greater trunnion cone angles (p=0.007) and (4) a smaller radius at the top of the trunnion (p=0.007). There was no difference for stem volume (p=0.643), CCD angle (p=0.788) or offset (p=0.993).

This study is the first independent investigation of the equivalence of a generic orthopaedic implant to its branded design. We found a clear difference in trunnion roughness, trunnion cone angle and radius, and implant mass when comparing the two generic and branded stem designs. All implants require standard regulatory processes to be followed. It does not appear feasible that generic implants can be manufactured to predictability guarantee the same performance as generic drugs.

We found a number of physical differences between the generic and branded implants. Whilst both designs are likely to work in clinical practice, they are different.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_13 | Pages 1 - 1
1 Jun 2017
Panagiotopoulou V Davda K Hothi H Henckel J Cerquiglini A Goodier W Skinner J Hart A Calder P
Full Access

Introduction

The Precice nail is the latest intramedullary lengthening nail with excellent early outcomes. Implant complications have led to modification of the nail design. The aim of this study was to perform a retrieval study of Precice nails following lower limb lengthening. To assess macroscopic and microscopic changes to the implants and assess differences following design modification, with identification of potential surgical, implant and patient risk factors.

Method

15 nails were retrieved from 13 patients following lower limb lengthening. Macroscopic and microscopic surface damage to the nails were identified. Further analysis included radiology and micro-CT prior to sectioning. The internal mechanism was then analysed with Scanning Electron Microscopy and Energy Dispersive X-ray Spectroscopy to identify corrosion.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_12 | Pages 51 - 51
1 Jun 2017
Di Laura A Hothi H Henckel J Liow M Kwon Y Skinner J Hart A
Full Access

Dual-taper implants provide surgeons with options to optimise patients' anatomy intraoperatively but are at risk of early revision due to adverse tissue reactions to corrosion debris. Risk factors for failure and linkage with symptoms however are not fully understood. We related retrieval findings to clinical and implant variables.

This study involved 88 failed dual-taper implants with TMZF femoral stems and cobalt-chromium necks, revised for pain, elevated Co (median = 7.3μg/L) and Cr (median = 2.15μg/L) ions levels and fluid collection on MRI.

Stem-neck surfaces were assessed for: 1) severity of corrosion using a published visual method and 2) severity of material lost and location of damage with a roundness-measuring machine. Five traces were taken on each round section of the taper surface at 45° increments to compute the relative depth of damage. The total area of these traces provided a measure of surface damage for comparative purposes.

The stem-neck taper junctions were severely corroded; the deepest areas of damage were on the inferior-proximal and superior-distal part of the necks, compatible with cantilever bending. Elemental analysis revealed chromium rich deposits indicative of corrosion processes and metal transfer from the stem to the neck.

There was a positive correlation between the severity of damage and time of implantation (p<0.0001). Co and Cr levels in the blood were also strongly correlated (p<0.0001, p=0.0002). No other implant or patient variables were linked.

The stem-neck junction was severely corroded in all cases. The severity and location of the areas of surface damage did not link with implant or patient characteristics in this big cohort suggesting that the design and material combination is the predominant source of failure in these designs.

Dual-taper hips are severely corroded at the stem-neck junction; this appears to be due to the use of a TMZF alloy stem paired with CoCrMo necks.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_12 | Pages 9 - 9
1 Jun 2017
Hothi H Duncan C Garbuz D Henckel J Skinner J Hart A
Full Access

Trunnionosis, due to mechanical wear and/or corrosion at the head stem taper junction, can occur in metal on polyethylene (MOP) hip implants. In some patients this results in severe soft tissue destruction or Adverse Reaction to Metal Debris (ARMD). The amount of material required to cause ARMD is unknown but analyses of retrieved hips may provide the answer to this clinically important question.

We collected implants from 20 patients with failed hips with MOP bearings, revised due to ARMD. We collected clinical, imaging and blood test data. We graded the severity of taper corrosion (1 to 4), and quantified the volume of material loss from this junction. We compared our results with previous data collected for metal-on-metal (MOM) hips.

The median time to revision of the MOP hips was 51.3 (23.1–56.4) months. All head tapers were moderately to severely corroded with a median corrosion score of 4. The median (range) of total material loss at the taper of the MOP hips was 3.9 mm3 (2.96 – 7.85 mm3) and the material loss rate was 1.4 mm3 / year (0.56 – 1.82).

Comparison with MOM hips revealed no significant difference in taper material loss (p=0.7344) with a median rate of 0.81 mm3 / year (0.01–3.45).

We are the first to quantify the volume of material loss at the head taper of hip implants with MOP bearings that were revised due to trunnionosis. This data indicates that a clinically significant dose of cobalt and chromium to induce ARMD is approximately 1.4 mm3 / year.

We have identified a clinically significant volume of taper material loss in MOP hips.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_12 | Pages 7 - 7
1 Jun 2017
Berber R Abdel-Gadir A Palla L Moon J Manisty C Skinner J Hart A
Full Access

Circulating cobalt and chromium from metal-on-metal implants cause rare but fatal autopsy-diagnosed cardiotoxicity. Concern exists that milder cardiotoxicity may be common and under-recognized. Unacceptably high failure rates of metal-on-metal hip implants have prompted regulatory authorities to issue worldwide safety alerts. Despite this, approximately 1 million patients continue to live with metal-on-metal implants, putting them at risk of systemic toxicity. Although blood cobalt and chromium levels are easily measured and track local toxicity, no non-invasive tests for organ deposition exist.

We recently demonstrated the utilisation of a T2* protocol (cardiovascular MRI) to detect cobalt and chromium deposition within the liver of a patient with elevated blood cobalt levels (confirmed by liver biopsy tissue analysis and X-ray fluorescence spectroscopy).

We sought to detect and constrain the correlation between blood metal ions and a comprehensive panel of established markers of early cardiotoxicity. In addition we applied T2* protocols with the aim of detecting cardiac metal deposition.

90 patients were recruited through RNOH clinics into this prospective single centre blinded study. Patients were divided into 3 age and gender-matched groups according to type of implant and blood metal ion levels as follows: [Group A] Non-metal bearing hip implants; [Group B] Metal-on-metal implants, low blood metal ion levels (<7ppb); and [Group C] Metal-on-metal implants, high blood levels (>7ppb).

All underwent detailed cardiovascular phenotyping using cardiac MRI (with T2*, T1 and ECV mapping, in addition to LV size and ejection fraction), advanced echocardiography (LV size and ejection fraction), and cardiac blood biomarker (Troponin and BNP) sampling in the same sitting at the Heart Hospital London. Primary outcomes were pre-specified. See study flow diagram – figure 1. (The study was registered with clinicaltrials.gov: NCT02331264).

Blood cobalt levels were significantly different between groups (0.17ppb (range 0·10–0·47, SD 0·08) vs. 2·47 (0·72–6·9, SD 1·81) vs. 30·0 (7·54–118.0, SD 29·1) respectively for groups A, B and C).

No significant between-group differences were found for LV size, ejection fraction (CMR or echocardiography), LA size, T1, T2*, ECV, BNP or troponin, with all results within normal ranges. There was no relationship between blood cobalt levels and either left ventricular ejection fraction or T2* (r=-0·022 and r=-0·108 respectively). Although small, the study was sufficiently powered to detect, as a minimum, a difference in ejection fraction of 4.8% (Cohen's d effect size 0·8).

Using best available technologies, exposure of patients with metal-on-metal hip implants to high (but not extreme) blood cobalt and chromium levels has no detectable effect on the heart. We believe these findings will offer reassurance to one million patients worldwide living with a metal-on-metal hip implant and will support clinicians caring for such patients.

For any figures or tables, please contact the authors directly by clicking on ‘Info & Metrics’ above to access author contact details.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_12 | Pages 10 - 10
1 Jun 2017
Di Laura A Quinn P Hothi H Henckel J Mosselmans F Skinner J Hart A
Full Access

Total hip arthroplasties are known to corrode predominantly at the taper junctions between Cobalt Chromium Molybedenum (CoCrMo) and Titanium (Ti) alloy components.

We aimed to understand the modes underlying clinically significant tissue reactions to metals from corroded implants by determining: (1) what type of metal is present in the tissues, (2) which cells contain the metal species and (3) how this compares with results from metal-on-metal (MOM) hip resurfacings (HRs).

This study involved periprosthetic tissue from patients that had undergone revision surgery due to adverse reactions to metal debris (ARMD) from dual-taper prostheses consisting of Ti-based alloy stems paired with CoCrMo necks. We used Synchrotron micro X-ray Fluorescence Spectroscopy (µXRF) and micro X-ray Absorption Near Edge Spectroscopy (µXANES) for detection of Co, Cr and Ti, and determination of their oxidation state.

Synchrotron radiation has shown that the chromium in tissues is Cr2O3 when derived from corroded CoCrMo/Ti junctions beside the CrPO4 species found when hip implants release CoCrMo nanoparticles from their bearing surfaces (MoM HRs). Presence of Cr2O3 was associated with titanium oxide TiO2. This may be the outcome of the chemical interaction between the two species. Histological examination showed corrosion products present within viable macrophages and in the extracellular connective tissue, Figure 1.

Understanding corrosion at taper junctions and the pathogenesis of the biological response is of significant clinical importance. This is the first study to co-register histology and metal distribution maps and to explore the potential synergy effect of CoCrMo with Ti alloy.

This study provides guidance for toxicological studies on wear/corrosion particles, how they stimulate the host response and the cellular mechanisms involved in the pathogenesis of ARMD.

For any figures or tables, please contact the authors directly by clicking on ‘Info & Metrics’ above to access author contact details.


The Bone & Joint Journal
Vol. 99-B, Issue 3 | Pages 310 - 316
1 Mar 2017
Hothi H Henckel J Shearing P Holme T Cerquiglini A Laura AD Atrey A Skinner J Hart A

Aims

The aim of this study was to compare the design of the generic OptiStem XTR femoral stem with the established Exeter femoral stem.

Materials and Methods

We obtained five boxed, as manufactured, implants of both designs at random (ten in total). Two examiners were blinded to the implant design and independently measured the mass, volume, trunnion surface topography, trunnion roughness, trunnion cone angle, Caput-Collum-Diaphyseal (CCD) angle, femoral offset, stem length, neck length, and the width and roughness of the polished stem shaft using peer-reviewed methods. We then compared the stems using these parameters.


Bone & Joint 360
Vol. 6, Issue 1 | Pages 41 - 42
1 Feb 2017
Dale-Skinner J


Bone & Joint Research
Vol. 6, Issue 1 | Pages 52 - 56
1 Jan 2017
Hothi HS Kendoff D Lausmann C Henckel J Gehrke T Skinner J Hart A

Objectives

Mechanical wear and corrosion at the head-stem junction of total hip arthroplasties (THAs) (trunnionosis) have been implicated in their early revision, most commonly in metal-on-metal (MOM) hips. We can isolate the role of the head-stem junction as the predominant source of metal release by investigating non-MOM hips; this can help to identify clinically significant volumes of material loss and corrosion from these surfaces.

Methods

In this study we examined a series of 94 retrieved metal-on-polyethylene (MOP) hips for evidence of corrosion and material loss at the taper junction using a well published visual grading method and an established roundness-measuring machine protocol. Hips were retrieved from 74 male and 20 female patients with a median age of 57 years (30 to 76) and a median time to revision of 215 months (2 to 324). The reasons for revision were loosening of both the acetabular component and the stem (n = 29), loosening of the acetabular component (n = 58) and infection (n = 7). No adverse tissue reactions were reported by the revision surgeons.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_11 | Pages 3 - 3
1 Jun 2016
Laura AD Whittaker R Hothi H Kwon Y Skinner J Hart A
Full Access

Introduction

Dual-mobility bearings increase the stable range of motion of total hip arthroplasty (THA) but are limited by the mechanical effects of a large diameter metal on polyethylene bearing which may cause high rates of wear from the surfaces of the polyethylene bearing and the head-stem taper. Improved polyethylene (PE) has reduced concern over bearing wear but the effects on the taper junction are unknown.

We aimed to better understand the effect of dual mobility bearings on fretting-corrosion damage to the taper junction by comparison to standard bearings.

Materials and Methods

We collected and analysed retrieved hips of one design with either dual mobility (n= 39) or standard bearings (n=30). The bearing size in the dual mobility group was 42mm whereas in the standard bearing group it had a median of 36mm. Stem trunnions had V40 tapers. Time of implantation and body mass index were comparable between the two groups.

Fretting and corrosion at the stem trunnions was quantified by: 1) visual scoring and 2) surface profilometry.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_11 | Pages 22 - 22
1 Jun 2016
Davidson J Sabah S Berber R Hothi H Miles J Carrington R Power A Skinner J Hart A
Full Access

Introduction

The Birmingham Hip Resurfacing (Smith & Nephew London, UK) is the most popular hip resurfacing (HR) in the UK. However, it is now subject to two Medical Device Alerts (MDA) from the Medicines and Healthcare products Regulatory Agency (MHRA).

Patients/Materials & Methods

A cross-sectional survey of primary metal-on-metal hip procedures recorded on the National Joint Registry for England, Wales and Northern Ireland (NJR) until 5th November 2013 was performed.

Cost-analysis was based on an algorithm for surveillance of HR at a tertiary referral centre and followed previous MHRA guidance. NIHR NHS Treatment costs were used.

The local protocol encompassed: patient outcome scoring (Oxford hip score), blood metal ion measurement (cobalt, chromium), cross-sectional imaging (MRI) and discussion at an internet-enabled multidisciplinary team meeting (iMDT) in addition to routine hip surveillance.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_11 | Pages 19 - 19
1 Jun 2016
Stirling E Gikas P Aston W Miles J Pollock R Carrington R Skinner J Briggs T
Full Access

Introduction

THR is one of the most frequently performed operations nationally. A large number of prostheses are available, and the procedure is therefore associated with variation in practice and outcomes. NICE guidelines aim to standardise best practice, and are informed by separate, independent bodies, such as the NJR and ODEP, which monitor data about the implants used and their performance. This study aims to determine whether clinical practice and component use has changed since the publication of NJR data.

Methods

NJR reports from 2006–2014 were analysed, with record made of the different prostheses used in THR, noting ODEP ratings of components used. Analysis was also performed by component type (i.e. cemented and cementless stems and cups), and combinations of components, according to their frequency of use in a given year. The Kruksal-Wallis test was used for statistical analysis.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_11 | Pages 25 - 25
1 Jun 2016
Ferguson D Henckel J Holme T Berber R Matthews W Carrington R Miles J Mitchell P Jagiello J Skinner J Hart A
Full Access

Introduction

Surgical simulation and ‘virtual’ surgical tools are becoming recognised as essential aids for speciality training in Trauma & Orthopaedics, as evidenced by the BOA T&O Simulation Curriculum 20131,2. The current generation of hip arthroplasty simulators, including cadaveric workshops, offers the trainee limited exposure to reproducible real life bony pathology. We developed and implemented a novel training course using pathological dry bone models generated from real patient cases to support senior orthopaedic trainees and new consultants in developing knowledge and hands on skills in complex total hip arthroplasty.

Patient/Materials & Methods

A two-day programme for 20 delegates was held at a specialist centre for hip arthroplasty. Three complex femoral and three complex acetabular cases were identified from patients seen at our centre. 3D models were printed from CT scans and dry bone models produced (using a mold-casting process), enabling each delegate to have a copy of each case at a cost of around £30 per case per delegate (Figure 1). The faculty was led by 4 senior Consultant revision hip surgeons. A computerised digitising arm was used to measure cup positioning and femoral stem version giving candidates immediate objective feedback (Figure 2). Candidate experience and satisfaction with the course and models was evaluated with a standardised post-course questionnaire.


Bone & Joint Research
Vol. 5, Issue 3 | Pages 80 - 86
1 Mar 2016
Scott G Imam MA Eifert A Freeman MAR Pinskerova V Field RE Skinner J Banks SA

Objectives

Throughout the 20th Century, it has been postulated that the knee moves on the basis of a four-bar link mechanism composed of the cruciate ligaments, the femur and the tibia. As a consequence, the femur has been thought to roll back with flexion, and total knee arthroplasty (TKA) prostheses have been designed on this basis. Recent work, however, has proposed that at a position of between 0° and 120° the medial femoral condyle does not move anteroposteriorly whereas the lateral femoral condyle tends, but is not obliged, to roll back – a combination of movements which equates to tibial internal/ femoral external rotation with flexion. The aim of this paper was to assess if the articular geometry of the GMK Sphere TKA could recreate the natural knee movements in situ/in vivo.

Methods

The pattern of knee movement was studied in 15 patients (six male: nine female; one male with bilateral TKAs) with 16 GMK Sphere implants, at a mean age of 66 years (53 to 76) with a mean BMI of 30 kg/m2 (20 to 35). The motions of all 16 knees were observed using pulsed fluoroscopy during a number of weight-bearing and non-weight-bearing static and dynamic activities.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_12 | Pages 4 - 4
1 Nov 2015
Osman K Panagiotidou A Meswania J Skinner J Hart A Haddad F Blunn G
Full Access

Introduction

Recent studies on large diameter femoral head hip replacements have implicated the modular taper junction as one of the significant sources of wear and corrosion products and this has been attributed to increased torque and bending on the taper interface. The aim of this study was to assess the effect of frictional torque and bending moment on fretting corrosion at the taper junction and to investigate whether different material combinations also had an effect.

Patients/Materials & Methods

We examined 1) Cobalt Chromium (CoCr) heads on CoCr stems 2) CoCr heads on Titanium alloy (Ti) stems and 3) Ceramic heads on CoCr stems. In test 1 increasing torque was imposed by offsetting the femoral stem in the anterior posterior plane in increments of 0 mm, 4 mm, 6 mm and 8 mm where the force generated was equivalent to 0Nm, 9Nm, 14Nm and 18Nm. In Test 2 we investigated the effect of increasing bending moment by offsetting the application of axial load from the midline in the medial-lateral (ML). Offset increments equivalent to +0, +7 and +14 heads were used. For each test we used n=3 for each different material combination.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_12 | Pages 27 - 27
1 Nov 2015
Berber R Khoo M Carrington R Miles J Skinner J Hart A
Full Access

Introduction

Uncertainties in the management of patients with MOM hip implants continue to be a problem for all surgeons. Guidelines vary and do not fully define or quantify thresholds. We aimed to assess the differences in decision-making amongst an international community of six specialist orthopaedic institutions.

Methods

Five international tertiary referral orthopaedic units (one UK, two USA, and two European) were invited to participate. Each unit organised an MDT panel consisting of 2 or more hip surgeons and a musculoskeletal radiologist. All units discussed the same 10 patients. A full clinical dataset was provided including blood test and all imaging. Differences in the interpretation of findings, management decision and rationale for decisions were compared between institutions.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_12 | Pages 26 - 26
1 Nov 2015
Skinner J Sabah S Henckel J Cook E Hothi H Hart A
Full Access

Introduction

The National Joint Registry (NJR) for England, Wales and Northern Ireland contributes important information on the performance of implants and surgeons. However, the quality of this data is not known. This study aimed to perform an independent validation of primary metal-on-metal hip procedures recorded on the NJR through linkage to the London Implant Retrieval Centre (LIRC).

Patients/Materials & Methods

Primary, metal-on-metal hip arthroplasties performed between 1st April 2003 and 5th November 2013 were recruited from the NJR (n=67045). Retrieved, metal-on-metal components were recruited from the LIRC (n=782). Data linkage and validation checks were performed.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_12 | Pages 2 - 2
1 Nov 2015
Govind G Henckel J Hothi H Sabah S Skinner J Hart A
Full Access

Introduction

Retrieved metal-on-metal acetabular components are invaluable resources from which to investigate the wear behaviour of failed hip implants. New forensic and investigative techniques continue to be developed to help the surgeon further understand factors which contribute to early failure. We have developed a novel technique to locate the in vivo location of the primary wear scar of an explanted cup.

Patients/Materials & Methods

Thirteen (13) patients with failed metal hip resurfacings were recruited and their acetabular components retrieved. A 3D wear map was generated and the precise location of the primary wear scar in each cup was identified using a coordinate measuring machine (CMM). This wear scar position and location was noted in relation to standard landmarks on the acetabular cup. All patients underwent a computerised tomography (CT) scan prior to revision surgery. The 3D positional map from the CMM was then co-registered with the implant on the patient's pelvic 3D CT scan.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_19 | Pages 57 - 57
1 Dec 2014
Olivier A Ghani Y Konan S Khan S Briggs TWR Skinner J Pollock R Aston W
Full Access

Introduction:

Non-invasive extendible endoprostheses (NIEE) were primarily developed for salvage after musculo-skeletal tumour surgery in the immature skeleton. However, they may also have a unique application to manage complex limb reconstruction in revision surgery to address limb-length inequality in the mature skeleton. The aim of this study is to present the minimum 2 –year results of using non-invasive extendible endoprostheses for complex lower limb reconstruction.

Methods:

Between 2004 and 2013, 21 patients were treated with 23 NIEE. The indication for surgery was salvage of infected prosthesis following primary tumor resection in 6 cases, aseptic prosthesis failure after primary tumour resection in 5 cases, aseptic non-tumor prosthesis failure in 1 case, infected non-tumor prosthesis in 8 cases and symptomatic non-union of graft reconstruction in 3 cases. There were 14 male and 7 female patients with a mean age of 49.8 years (range 19–81).