To assess the incidence of radiological lateral osteoarthritis (OA) at 15 years after medial unicompartmental knee arthroplasty (UKA) and assess the relationship of lateral OA with symptoms and patient characteristics. Cemented Phase 3 medial Oxford UKA implanted by two surgeons since 1998 for the recommended indications were prospectively followed. A 15-year cumulative revision rate for lateral OA of 5% for this series was previously reported. A total of 163 unrevised knees with 15-year (SD 1) anterior-posterior knee radiographs were studied. Lateral joint space width (JSWL) was measured and severity of lateral OA was classified as: nil/mild, moderate, and severe. Preoperative and 15-year Oxford Knee Scores (OKS) and American Knee Society Scores were determined. The effect of age, sex, BMI, and intraoperative findings was analyzed. Statistical analysis included one-way analysis of variance and Kruskal-Wallis H test, with significance set at 5%.Aims
Methods
The aim of this study was to determine the polyethylene wear rate of Phase 3 Oxford Unicompartmental Knee Replacement bearings and to investigate the effects of resin type and manufacturing process. A total of 63 patients with at least ten years’ follow-up with three bearing types (1900 resin machined, 1050 resin machined, and 1050 resin moulded) were recruited. Patients underwent full weight-bearing model-based radiostereometric analysis to determine the bearing thickness. The linear wear rate was estimated from the change in thickness divided by the duration of implantation.Objectives
Methods
The primary stability of the cementless Oxford Unicompartmental Knee Replacement (OUKR) relies on interference fit (or press fit). Insufficient interference may cause implant loosening, whilst excessive interference could cause bone damage and fracture. The aim of this study was to identify the optimal interference fit by measuring the force required to seat the tibial component of the cementless OUKR (push-in force) and the force required to remove the component (pull-out force). Six cementless OUKR tibial components were implanted in 12 new slots prepared on blocks of solid polyurethane foam (20 pounds per cubic foot (PCF), Sawbones, Malmo, Sweden) with a range of interference of 0.1 mm to 1.9 mm using a Dartec materials testing machine HC10 (Zwick Ltd, Herefordshire, United Kingdom) . The experiment was repeated with cellular polyurethane foam (15 PCF), which is a more porous analogue for trabecular bone.Objectives
Materials and Methods