Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Bone & Joint Open
Vol. 4, Issue 6 | Pages 399 - 407
1 Jun 2023
Yeramosu T Ahmad W Satpathy J Farrar JM Golladay GJ Patel NK

Aims. To identify variables independently associated with same-day discharge (SDD) of patients following revision total knee arthroplasty (rTKA) and to develop machine learning algorithms to predict suitable candidates for outpatient rTKA. Methods. Data were obtained from the American College of Surgeons National Quality Improvement Programme (ACS-NSQIP) database from the years 2018 to 2020. Patients with elective, unilateral rTKA procedures and a total hospital length of stay between zero and four days were included. Demographic, preoperative, and intraoperative variables were analyzed. A multivariable logistic regression (MLR) model and various machine learning techniques were compared using area under the curve (AUC), calibration, and decision curve analysis. Important and significant variables were identified from the models. Results. Of the 5,600 patients included in this study, 342 (6.1%) underwent SDD. The random forest (RF) model performed the best overall, with an internally validated AUC of 0.810. The ten crucial factors favoring SDD in the RF model include operating time, anaesthesia type, age, BMI, American Society of Anesthesiologists grade, race, history of diabetes, rTKA type, sex, and smoking status. Eight of these variables were also found to be significant in the MLR model. Conclusion. The RF model displayed excellent accuracy and identified clinically important variables for determining candidates for SDD following rTKA. Machine learning techniques such as RF will allow clinicians to accurately risk-stratify their patients preoperatively, in order to optimize resources and improve patient outcomes. Cite this article: Bone Jt Open 2023;4(6):399–407


The Bone & Joint Journal
Vol. 106-B, Issue 6 | Pages 573 - 581
1 Jun 2024
van Houtert WFC Strijbos DO Bimmel R Krijnen WP Jager J van Meeteren NLU van der Sluis G

Aims

To investigate the impact of consecutive perioperative care transitions on in-hospital recovery of patients who had primary total knee arthroplasty (TKA) over an 11-year period.

Methods

This observational cohort study used electronic health record data from all patients undergoing preoperative screening for primary TKA at a Northern Netherlands hospital between 2009 and 2020. In this timeframe, three perioperative care transitions were divided into four periods: Baseline care (Joint Care, n = 171; May 2009 to August 2010), Function-tailored (n = 404; September 2010 to October 2013), Fast-track (n = 721; November 2013 to May 2018), and Prehabilitation (n = 601; June 2018 to December 2020). In-hospital recovery was measured using inpatient recovery of activities (IROA), length of stay (LOS), and discharge to preoperative living situation (PLS). Multivariable regression models were used to analyze the impact of each perioperative care transition on in-hospital recovery.