The treatment of osteoporotic fractures is a major challenge, and the enhancement of healing is critical as a major goal in modern fracture management. Most osteoporotic fractures occur at the metaphyseal bone region but few models exist and the healing is still poorly understood. A systematic review was conducted to identify and analyse the appropriateness of current osteoporotic metaphyseal fracture animal models. A literature search was performed on the Pubmed, Embase, and Web of Science databases, and relevant articles were selected. A total of 19 studies were included. Information on the animal, induction of osteoporosis, fracture technique, site and fixation, healing results, and utility of the model were extracted.Objectives
Materials and Methods
Bisphosphonates (BP) are the first-line treatment for preventing fragility fractures. However, concern regarding their efficacy is growing because bisphosphonate is associated with over-suppression of remodelling and accumulation of microcracks. While dual-energy X-ray absorptiometry (DXA) scanning may show a gain in bone density, the impact of this class of drug on mechanical properties remains unclear. We therefore sought to quantify the mechanical strength of bone treated with BP (oral alendronate), and correlate data with the microarchitecture and density of microcracks in comparison with untreated controls. Trabecular bone from hip fracture patients treated with BP (n = 10) was compared with naïve fractured (n = 14) and non-fractured controls (n = 6). Trabecular cores were synchrotron scanned and micro-CT scanned for microstructural analysis, including quantification of bone volume fraction, microarchitecture and microcracks. The specimens were then mechanically tested in compression.Objectives
Methods