The aim of this meta-analysis was to determine the pooled incidence of postoperative urinary retention (POUR) following total hip and knee arthroplasty (total joint replacement (TJR)) and to evaluate the risk factors and complications associated with POUR. Two authors conducted searches in PubMed, Embase, Web of Science, and Scopus on TJR and urinary retention. Eligible studies that reported the rate of POUR and associated risk factors for patients undergoing TJR were included in the analysis. Patient demographic details, medical comorbidities, and postoperative outcomes and complications were separately analyzed. The effect estimates for continuous and categorical data were reported as standardized mean differences (SMDs) and odds ratios (ORs) with 95% CIs, respectively.Aims
Methods
The aim of this study is to assess the impact of a pilot enhanced recovery after surgery (ERAS) programme on length of stay (LOS) and post-discharge resource usage via service evaluation and cost analysis. Between May and December 2019, 100 patients requiring hip or knee arthroplasty were enrolled with the intention that each would have a preadmission discharge plan, a preoperative education class with nominated helper, a day of surgery admission and mobilization, a day one discharge, and access to a 24/7 dedicated helpline. Each was matched with a patient under the pre-existing pathway from the previous year.Aims
Methods
The enhanced recovery after surgery (ERAS) concept in arthroplasty surgery has led to a reduction in postoperative length of stay in recent years. Patients with prolonged length of stay (PLOS) add to the burden of a strained NHS. Our aim was to identify the main reasons. A PLOS was arbitrarily defined as an inpatient hospital stay of four days or longer from admission date. A total of 2,000 consecutive arthroplasty patients between September 2017 and July 2018 were reviewed. Of these, 1,878 patients were included after exclusion criteria were applied. Notes for 524 PLOS patients were audited to determine predominant reasons for PLOS.Introduction
Methods
Initial stability of tibial trays is crucial for long-term success of total knee arthroplasty (TKA) in both primary and revision settings. Rotating platform (RP) designs reduce torque transfer at the tibiofemoral interface. We asked if this reduced torque transfer in RP designs resulted in subsequently reduced micromotion at the cemented fixation interface between the prosthesis component and the adjacent bone. Composite tibias were implanted with fixed and RP primary and revision tibial trays and biomechanically tested under up to 2.5 kN of axial compression and 10° of external femoral component rotation. Relative micromotion between the implanted tibial tray and the neighbouring bone was quantified using high-precision digital image correlation techniques.Objectives
Methods
Wear debris released from bearing surfaces has been shown to
provoke negative immune responses in the recipient. Excessive wear
has been linked to early failure of prostheses. Analysis using coordinate
measuring machines (CMMs) can provide estimates of total volumetric
material loss of explanted prostheses and can help to understand
device failure. The accuracy of volumetric testing has been debated,
with some investigators stating that only protocols involving hundreds
of thousands of measurement points are sufficient. We looked to
examine this assumption and to apply the findings to the clinical
arena. We examined the effects on the calculated material loss from
a ceramic femoral head when different CMM scanning parameters were
used. Calculated wear volumes were compared with gold standard gravimetric
tests in a blinded study. Objectives
Methods